High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor Y Gong, C Huang, JZ Li, BF Grewe, Y Zhang, S Eismann, MJ Schnitzer Science 350 (6266), 1361-1366, 2015 | 514 | 2015 |
Learning from protein structure with geometric vector perceptrons B Jing, S Eismann, P Suriana, RJL Townshend, R Dror arXiv preprint arXiv:2009.01411, 2020 | 511 | 2020 |
Geometric deep learning of RNA structure RJL Townshend, S Eismann, AM Watkins, R Rangan, M Karelina, R Das, ... Science 373 (6558), 1047-1051, 2021 | 351 | 2021 |
Molecular mechanism of biased signaling in a prototypical G-protein-coupled receptor CM Suomivuori, NR Latorraca, LM Wingler, S Eismann, MC King, ... Biophysical Journal 118 (3), 162a, 2020 | 218 | 2020 |
Learning neural PDE solvers with convergence guarantees JT Hsieh, S Zhao, S Eismann, L Mirabella, S Ermon arXiv preprint arXiv:1906.01200, 2019 | 152 | 2019 |
Atom3d: Tasks on molecules in three dimensions RJL Townshend, M Vögele, P Suriana, A Derry, A Powers, Y Laloudakis, ... arXiv preprint arXiv:2012.04035, 2020 | 132 | 2020 |
Equivariant graph neural networks for 3d macromolecular structure B Jing, S Eismann, PN Soni, RO Dror arXiv preprint arXiv:2106.03843, 2021 | 91 | 2021 |
Hierarchical, rotation‐equivariant neural networks to select structural models of protein complexes S Eismann, RJL Townshend, N Thomas, M Jagota, B Jing, RO Dror Proteins: Structure, Function, and Bioinformatics, 2020 | 68 | 2020 |
Protein sequence‐to‐structure learning: Is this the end (‐to‐end revolution)? E Laine, S Eismann, A Elofsson, S Grudinin Proteins: Structure, Function, and Bioinformatics 89 (12), 1770-1786, 2021 | 42 | 2021 |
Bayesian optimization and attribute adjustment S Eismann, D Levy, R Shu, S Bartzsch, S Ermon Proc. 34th Conference on Uncertainty in Artificial Intelligence, 2018 | 33 | 2018 |
A preclinical microbeam facility with a conventional x‐ray tube S Bartzsch, C Cummings, S Eismann, U Oelfke Medical physics 43 (12), 6301-6308, 2016 | 32 | 2016 |
Protein model quality assessment using rotation-equivariant, hierarchical neural networks S Eismann, P Suriana, B Jing, RJL Townshend, RO Dror arXiv preprint arXiv:2011.13557, 2020 | 12 | 2020 |
Geometric prediction: Moving beyond scalars RJL Townshend, B Townshend, S Eismann, RO Dror arXiv preprint arXiv:2006.14163, 2020 | 8 | 2020 |
Hierarchical, rotation-equivariant neural networks to predict the structure of protein complexes S Eismann, RJL Townshend, N Thomas, M Jagota, B Jing, R Dror arXiv preprint arXiv:2006.09275, 2020 | 8 | 2020 |
ATOM-1: a foundation model for RNA structure and function built on chemical mapping data N Boyd, BM Anderson, B Townshend, R Chow, CJ Stephens, R Rangan, ... BioRxiv, 2023.12. 13.571579, 2023 | 7 | 2023 |
Protein connectivity in chemotaxis receptor complexes S Eismann, RG Endres PLoS Computational Biology 11 (12), e1004650, 2015 | 6 | 2015 |
RNA-Puzzles Round V: blind predictions of 23 RNA structures F Bu, Y Adam, RW Adamiak, M Antczak, BRH de Aquino, NG Badepally, ... Nature methods, 1-13, 2024 | 3 | 2024 |
Protein model quality assessment using rotation‐equivariant transformations on point clouds S Eismann, P Suriana, B Jing, RJL Townshend, RO Dror Proteins: Structure, Function, and Bioinformatics 91 (8), 1089-1096, 2023 | 2 | 2023 |
MACHINE-LEARNING FOUNDATION MODEL FOR GENERATING BIOPOLYMER EMBEDDINGS NR Boyd, SJ Eismann, RJ Lamarre Townshend, B Townshend, ... US Patent App. 18/733,699, 2024 | | 2024 |
Systems and Methods to Determine RNA Structure and Uses Thereof R Townshend, S Eismann, A Watkins, R Das, RO Dror US Patent App. 18/562,693, 2024 | | 2024 |