Obserwuj
Gang Zhao
Gang Zhao
Assistant Professor at the Tokyo Institute of Technology
Zweryfikowany adres z m.titech.ac.jp
Tytuł
Cytowane przez
Cytowane przez
Rok
Mapping flood susceptibility in mountainous areas on a national scale in China
G Zhao, B Pang, Z Xu, J Yue, T Tu
Science of the Total Environment 615, 1133-1142, 2018
3592018
XGBoost-based method for flash flood risk assessment
M Ma, G Zhao, B He, Q Li, H Dong, S Wang, Z Wang
Journal of Hydrology 598, 126382, 2021
2842021
Assessment of urban flood susceptibility using semi-supervised machine learning model
G Zhao, B Pang, Z Xu, D Peng, L Xu
Science of the Total Environment 659, 940-949, 2019
2462019
Urban flood susceptibility assessment based on convolutional neural networks
G Zhao, B Pang, Z Xu, D Peng, D Zuo
Journal of Hydrology 590, 125235, 2020
1192020
Statistical downscaling of temperature with the random forest model
B Pang, J Yue, G Zhao, Z Xu
Advances in Meteorology 2017 (1), 7265178, 2017
932017
Flash flood risk analysis based on machine learning techniques in the Yunnan Province, China
M Ma, C Liu, G Zhao, H Xie, P Jia, D Wang, H Wang, Y Hong
Remote Sensing 11 (2), 170, 2019
652019
An enhanced inundation method for urban flood hazard mapping at the large catchment scale
G Zhao, Z Xu, B Pang, T Tu, L Xu, L Du
Journal of Hydrology 571, 873-882, 2019
592019
Improving urban flood susceptibility mapping using transfer learning
G Zhao, B Pang, Z Xu, L Cui, J Wang, D Zuo, D Peng
Journal of Hydrology 602, 126777, 2021
582021
Impact of urbanization on rainfall-runoff processes: case study in the Liangshui River Basin in Beijing, China
Z Xu, G Zhao
Proceedings of the International Association of Hydrological Sciences 373, 7-12, 2016
542016
A hybrid machine learning framework for real-time water level prediction in high sediment load reaches
G Zhao, B Pang, Z Xu, L Xu
Journal of Hydrology 581, 124422, 2020
342020
Spatial and temporal variations of precipitation during 1979–2015 in Jinan City, China
X Chang, Z Xu, G Zhao, T Cheng, S Song
Journal of Water and Climate Change 9 (3), 540-554, 2018
302018
Flood susceptibility assessment with random sampling strategy in ensemble learning (RF and XGBoost)
H Ren, B Pang, P Bai, G Zhao, S Liu, Y Liu, M Li
Remote Sensing 16 (2), 320, 2024
282024
The impact of dams on design floods in the conterminous US
G Zhao, P Bates, J Neal
Water Resources Research 56 (3), e2019WR025380, 2020
262020
Large-scale flash flood warning in China using deep learning
G Zhao, R Liu, M Yang, T Tu, M Ma, Y Hong, X Wang
Journal of Hydrology 604, 127222, 2022
252022
Design flood estimation for global river networks based on machine learning models
G Zhao, P Bates, J Neal, B Pang
Hydrology and Earth System Sciences 25 (11), 5981-5999, 2021
242021
基于 SWMM 模型的城市雨洪模拟与 LID 效果评价——以北京市清河流域为例
常晓栋, 徐宗学, 赵刚, 杜龙刚
水力发电学报 35 (11), 84-93, 2016
222016
Sensitivity analysis on SWMM model parameters based on Sobol method
X Chang, Z Xu, G Zhao, H Li
J. Hydro-Electr. Engineering 37, 59-68, 2018
192018
快速城市化对产汇流影响的研究: 以凉水河流域为例
赵刚, 史蓉, 庞博, 徐宗学, 杜龙刚, 常晓栋
水力发电学报 35 (5), 55-64, 2016
192016
SWMM 模型在城市暴雨洪水模拟中的参数敏感性分析
史蓉, 庞博, 赵刚, 杜龙刚, 钟一丹, 左萍
北京师范大学学报 (自然科学版), 456-460, 2014
172014
Uncertainty assessment of urban hydrological modelling from a multiple objective perspective
B Pang, S Shi, G Zhao, R Shi, D Peng, Z Zhu
Water 12 (5), 1393, 2020
162020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20