Obserwuj
Haoyang Li
Haoyang Li
Postdoctoral Associate, Cornell University
Zweryfikowany adres z med.cornell.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
OOD-GNN: Out-of-Distribution Generalized Graph Neural Network
H Li, X Wang, Z Zhang, W Zhu
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021
1312021
Billion-scale network embedding with iterative random projection
Z Zhang, P Cui, H Li, X Wang, W Zhu
IEEE International Conference on Data Mining (ICDM), 787-796, 2018
1092018
Learning Invariant Graph Representations for Out-of-Distribution Generalization
H Li, Z Zhang, X Wang, W Zhu
Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS), 2022
1062022
Out-Of-Distribution Generalization on Graphs: A Survey
H Li, X Wang, Z Zhang, W Zhu
arXiv preprint arXiv:2202.07987, 2022
1052022
Disentangled Contrastive Learning on Graphs
H Li, X Wang, Z Zhang, Z Yuan, H Li, W Zhu
Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS), 2021
1042021
Intention-aware Sequential Recommendation with Structured Intent Transition
H Li, X Wang, Z Zhang, J Ma, P Cui, W Zhu
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021
732021
Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift
Z Zhang, X Wang, Z Zhang, H Li, Z Qin, W Zhu
Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS), 2022
712022
LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?
Z Zhang, X Wang, Z Zhang, H Li, Y Qin, W Zhu
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024), 2024
40*2024
AutoGL: A Library for Automated Graph Learning
C Guan, Z Zhang, H Li, H Chang, Z Zhang, Y Qin, J Jiang, X Wang, W Zhu
ICLR 2021 Workshop on Geometrical and Topological Representation Learning, 2021
37*2021
Disentangled Graph Contrastive Learning With Independence Promotion
H Li, Z Zhang, X Wang, W Zhu
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
342022
Curriculum Graph Machine Learning: A Survey
H Li, X Wang, W Zhu
International Joint Conference on Artificial Intelligence (IJCAI), 2023
232023
Intent-aware recommendation via disentangled graph contrastive learning
Y Wang, X Wang, X Huang, Y Yu, H Li, M Zhang, Z Guo, W Wu
International Joint Conference on Artificial Intelligence (IJCAI 2023), 2023
222023
Graph Meets LLMs: Towards Large Graph Models
Z Zhang, H Li, Z Zhang, Y Qin, X Wang, W Zhu
NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023
202023
AutoGT: Automated Graph Transformer Architecture Search
Z Zhang, X Wang, C Guan, Z Zhang, H Li, W Zhu
International Conference on Learning Representations (ICLR 2023), 2023
202023
Spectral invariant learning for dynamic graphs under distribution shifts
Z Zhang, X Wang, Z Zhang, Z Qin, W Wen, H Xue, H Li, W Zhu
Thirty-Seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
162023
Fates of Microscopic Social Ecosystems: Keep Alive or Dead?
H Li, P Cui, C Zang, T Zhang, W Zhu, Y Lin
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
162019
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization
T Jia, H Li, C Yang, T Tao, C Shi
AAAI Conference on Artificial Intelligence (AAAI 2024), 2024
152024
Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions
X Wang, Z Zhang, H Li, W Zhu
arXiv preprint arXiv:2201.01288, 2024
142024
Large graph models: A perspective
Z Zhang, H Li, Z Zhang, Y Qin, X Wang, W Zhu
arXiv preprint arXiv:2308.14522, 2023
142023
Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments
H Li, Z Zhang, X Wang, W Zhu
ACM Transactions on Information Systems (TOIS), 2023
132023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20