Obserwuj
Zheyu Zhang
Zheyu Zhang
Northeast Forestry University
Zweryfikowany adres z nefu.edu.cn
Tytuł
Cytowane przez
Cytowane przez
Rok
Responses of soil respiration and its sensitivities to temperature and precipitation: A meta-analysis
Z Zhang, Y Li, RA Williams, Y Chen, R Peng, X Liu, Y Qi, Z Wang
Ecological Informatics 75, 102057, 2023
212023
Modeling and prediction of soil organic matter content based on visible-near-Infrared spectroscopy
C Li, J Zhao, Y Li, Y Meng, Z Zhang
Forests 12 (12), 1809, 2021
172021
Algorithm of stability-analysis-based feature selection for NIR calibration transfer
Z Zhang, Y Li, C Li, Z Wang, Y Chen
Sensors 22 (4), 1659, 2022
112022
Modeling of soluble solid content of PE‐packaged blueberries based on near‐infrared spectroscopy with back propagation neural network and partial least squares (BP–PLS) algorithm
Y Chen, Y Li, RA Williams, Z Zhang, R Peng, X Liu, T Xing
Journal of Food Science 88 (11), 4602-4619, 2023
102023
Prediction approach of larch wood density from visible–near-infrared spectroscopy based on parameter calibrating and transfer learning
Z Zhang, Y Li, Y Li
Frontiers in Plant Science 13, 1006292, 2022
102022
Thinning effects on stand structure and carbon content of secondary forests
Z Wang, Y Li, Y Meng, C Li, Z Zhang
Forests 13 (4), 512, 2022
82022
Individual Tree Species Identification for Complex Coniferous and Broad-Leaved Mixed Forests Based on Deep Learning Combined with UAV LiDAR Data and RGB Images
H Zhong, Z Zhang, H Liu, J Wu, W Lin
Forests 15 (2), 293, 2024
72024
Drivers of spatial structure in thinned forests
Z Wang, Y Li, G Wang, Z Zhang, Y Chen, X Liu, R Peng
Forest Ecosystems 11, 100182, 2024
52024
Mechanical Property Prediction of Larix gmelinii Wood Based on Vis-Near-Infrared Spectroscopy
C Li, Y Li, Y Zhao, Z Zhang, Z Wang
Forests 13 (12), 1995, 2022
42022
Determinants of carbon sequestration in thinned forests
Z Wang, G Wang, Y Li, Z Zhang
Science of The Total Environment 951, 175540, 2024
32024
A bidirectional domain separation adversarial network based transfer learning method for near-infrared spectra
Z Zhang, S Avramidis, Y Li, X Liu, R Peng, Y Chen, Z Wang
Engineering Applications of Artificial Intelligence 137, 109140, 2024
32024
NIR Model Optimization Study of Larch Wood Density Based on IFSR Abnormal Sample Elimination
Z Zhe-yu, L Yao-xiang, W Zhi-yuan, L Chun-xu
Spectroscopy and Spectral Analysis 42 (11), 3395-3402, 2022
32022
Predicting components of pulpwood feedstock for different physical forms and tree species using NIR spectroscopy and transfer learning
Z Zhang, H Zhong, Y Li, RA Williams, R Peng, Y Chen, X Liu
Cellulose 31 (1), 551-566, 2024
22024
NIR Inversion Model of Larch Wood Density at Different Moisture Contents Based on MVO-BPNN
Z Wang, Z Zhang, RA Williams, Y Li
Journal of Applied Spectroscopy 91 (2), 472-479, 2024
12024
Classification models for identifying Pterocarpus santalinus L.f. using NIR spectroscopy data
Y Qi, Y Li, Z Zhang, J Zhou, Z Qin, Y Li, C Chen
Holzforschung 79 (1), 1-14, 2025
2025
Transfer learning for predicting wood density of different tree species: calibration transfer from portable NIR spectrometer to hyperspectral imaging
Z Zhang, H Zhong, S Avramidis, S Wu, W Lin, Y Li
Wood Science and Technology 59 (1), 1-26, 2025
2025
Stand structure dynamics and effect evaluation after thinning
Z Wang, Y Li, RA Williams, Z Zhang, G Xie
2023
Thinning Effects on Stand Structure and Carbon Content of Secondary Forests. Forests 2022, 13, 512
Z Wang, Y Li, Y Meng, C Li, Z Zhang
s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2022
2022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–18