Obserwuj
Taylor M. Oshan
Tytuł
Cytowane przez
Cytowane przez
Rok
MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale
TM Oshan, Z Li, W Kang, LJ Wolf, AS Fotheringham
ISPRS International Journal of Geo-Information 8 (6), 269, 2019
6472019
Inference in multiscale geographically weighted regression
H Yu, AS Fotheringham, Z Li, T Oshan, W Kang, LJ Wolf
Geographical Analysis 52 (1), 87-106, 2020
3462020
Geographically weighted regression and multicollinearity: dispelling the myth
AS Fotheringham, TM Oshan
Journal of geographical systems 18, 303-329, 2016
3032016
Analysis of human mobility patterns from GPS trajectories and contextual information
K Siła-Nowicka, J Vandrol, T Oshan, JA Long, U Demšar, ...
International Journal of Geographical Information Science 30 (5), 881-906, 2016
2962016
Targeting the spatial context of obesity determinants via multiscale geographically weighted regression
TM Oshan, J Smith, AS Fotheringham
OSF Preprints, 2020
1942020
Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations
Z Li, AS Fotheringham, W Li, T Oshan
International Journal of Geographical Information Science 33 (1), 155-175, 2019
992019
Single and Multiscale Models of Process Spatial Heterogeneity
LJ Wolf, TM Oshan, AS Fotheringham
Geographical Analysis, 2018
982018
Measuring bandwidth uncertainty in multiscale geographically weighted regression using Akaike weights
Z Li, AS Fotheringham, TM Oshan, LJ Wolf
Annals of the American Association of Geographers 110 (5), 1500-1520, 2020
712020
A comparison of spatially varying regression coefficient estimates using geographically weighted and spatial‐filter‐based techniques
TM Oshan, AS Fotheringham
Geographical Analysis 50 (1), 53-75, 2018
662018
On the measurement of bias in geographically weighted regression models
H Yu, AS Fotheringham, Z Li, T Oshan, LJ Wolf
Spatial Statistics 38, 100453, 2020
522020
A comment on geographically weighted regression with parameter-specific distance metrics
T Oshan, LJ Wolf, AS Fotheringham, W Kang, Z Li, H Yu
International Journal of Geographical Information Science 33 (7), 1289-1299, 2019
51*2019
The spatial structure debate in spatial interaction modeling: 50 years on
TM Oshan
Progress in Human Geography 45 (5), 925-950, 2021
472021
The PySAL Ecosystem: Philosophy and Implementation
SJ Rey, L Anselin, P Amaral, D Arribas‐Bel, RX Cortes, JD Gaboardi, ...
Geographical Analysis 54 (3), 467-487, 2022
442022
On the notion of ‘bandwidth’in geographically weighted regression models of spatially varying processes
AS Fotheringham, H Yu, LJ Wolf, TM Oshan, Z Li
International Journal of Geographical Information Science 36 (8), 1485-1502, 2022
372022
A primer for working with the Spatial Interaction modeling (SpInt) module in the python spatial analysis library (PySAL)
TM Oshan
Region 3 (2), R11-R23, 2016
372016
A roundtable discussion: Defining urban data science
Organizers, W Kang, T Oshan, LJ Wolf, Discussants, G Boeing, ...
Environment and Planning B: Urban Analytics and City Science 46 (9), 1756-1768, 2019
302019
A scoping review on the multiplicity of scale in spatial analysis
TM Oshan, LJ Wolf, M Sachdeva, S Bardin, AS Fotheringham
Journal of Geographical Systems 24 (3), 293-324, 2022
212022
Multiscale geographically weighted regression: Theory and practice
AS Fotheringham, TM Oshan, Z Li
CRC Press, 2023
192023
Spatial interaction
C Farmer, T Oshan
The Geographic Information Science & Technology Body of Knowledge (4th …, 2017
182017
The importance of null hypotheses: Understanding differences in local Moran’s under heteroskedasticity
J Sauer, T Oshan, S Rey, LJ Wolf
Geographical Analysis 54 (4), 752-768, 2022
162022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20