Obserwuj
Zhongwen Li
Zhongwen Li
Wenzhou Medical University
Zweryfikowany adres z wmu.edu.cn
Tytuł
Cytowane przez
Cytowane przez
Rok
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study
D Lin, J Xiong, C Liu, L Zhao, Z Li, S Yu, X Wu, Z Ge, X Hu, B Wang, M Fu, ...
The Lancet Digital Health 3 (8), e486-e495, 2021
1142021
Preventing corneal blindness caused by keratitis using artificial intelligence
Z Li, J Jiang, K Chen, Q Chen, Q Zheng, X Liu, H Weng, S Wu, W Chen
Nature communications 12 (1), 3738, 2021
932021
Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images
Z Li, C Guo, D Nie, D Lin, Y Zhu, C Chen, X Wu, F Xu, C Jin, X Zhang, ...
Communications biology 3 (1), 15, 2020
822020
Artificial intelligence in ophthalmology: The path to the real-world clinic
Z Li, L Wang, X Wu, J Jiang, W Qiang, H Xie, H Zhou, S Wu, Y Shao, ...
Cell Reports Medicine, 2023
682023
A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images
Z Li, C Guo, D Nie, D Lin, Y Zhu, C Chen, L Zhang, F Xu, C Jin, X Zhang, ...
Annals of translational medicine 7 (22), 2019
502019
Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images
Z Li, C Guo, D Lin, D Nie, Y Zhu, C Chen, L Zhao, J Wang, X Zhang, ...
British journal of ophthalmology 105 (11), 1548-1554, 2021
492021
Artificial intelligence to detect malignant eyelid tumors from photographic images
Z Li, W Qiang, H Chen, M Pei, X Yu, L Wang, Z Li, W Xie, X Wu, J Jiang, ...
NPJ digital medicine 5 (1), 23, 2022
322022
Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning
Z Li, C Guo, D Nie, D Lin, T Cui, Y Zhu, C Chen, L Zhao, X Zhang, ...
Eye 36 (8), 1681-1686, 2022
302022
Development and evaluation of a deep learning system for screening retinal hemorrhage based on ultra-widefield fundus images
Z Li, C Guo, D Nie, D Lin, Y Zhu, C Chen, Y Xiang, F Xu, C Jin, X Zhang, ...
Translational vision science & technology 9 (2), 3-3, 2020
302020
Deep learning from “passive feeding” to “selective eating” of real-world data
Z Li, C Guo, D Nie, D Lin, Y Zhu, C Chen, L Zhao, X Wu, M Dongye, F Xu, ...
NPJ digital medicine 3 (1), 143, 2020
232020
Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study
Z Li, J Jiang, K Chen, Q Zheng, X Liu, H Weng, S Wu, W Chen
Computer Methods and Programs in Biomedicine 203, 106048, 2021
132021
Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: a multicentre study
Z Li, J Jiang, H Zhou, Q Zheng, X Liu, K Chen, H Weng, W Chen
International journal of medical informatics 147, 104363, 2021
112021
Comparison of deep learning systems and cornea specialists in detecting corneal diseases from low-quality images
Z Li, J Jiang, W Qiang, L Guo, X Liu, H Weng, S Wu, Q Zheng, W Chen
Iscience 24 (11), 2021
102021
Solving data quality issues of fundus images in real-world settings by ophthalmic AI
Z Li, W Chen
Cell Reports Medicine 4 (2), 2023
22023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–14