Obserwuj
Hiroya Maeda
Hiroya Maeda
Zweryfikowany adres z iis.u-tokyo.ac.jp
Tytuł
Cytowane przez
Cytowane przez
Rok
Road damage detection and classification using deep neural networks with smartphone images
H Maeda, Y Sekimoto, T Seto, T Kashiyama, H Omata
Computer‐Aided Civil and Infrastructure Engineering 33 (12), 1127-1141, 2018
7392018
Road damage detection using deep neural networks with images captured through a smartphone
H Maeda, Y Sekimoto, T Seto, T Kashiyama, H Omata
arXiv preprint arXiv:1801.09454, 2018
2952018
Generative adversarial network for road damage detection
H Maeda, T Kashiyama, Y Sekimoto, T Seto, H Omata
Computer‐Aided Civil and Infrastructure Engineering 36 (1), 47-60, 2021
2782021
Deep learning-based road damage detection and classification for multiple countries
D Arya, H Maeda, SK Ghosh, D Toshniwal, A Mraz, T Kashiyama, ...
Automation in Construction 132, 103935, 2021
1892021
Global road damage detection: State-of-the-art solutions
D Arya, H Maeda, SK Ghosh, D Toshniwal, H Omata, T Kashiyama, ...
2020 IEEE International Conference on Big Data (Big Data), 5533-5539, 2020
1682020
RDD2020: An annotated image dataset for automatic road damage detection using deep learning
D Arya, H Maeda, SK Ghosh, D Toshniwal, Y Sekimoto
Data in brief 36, 107133, 2021
1492021
RDD2022: A multi‐national image dataset for automatic road damage detection
D Arya, H Maeda, SK Ghosh, D Toshniwal, Y Sekimoto
Geoscience Data Journal 11 (4), 846-862, 2024
1302024
Transfer learning-based road damage detection for multiple countries
D Arya, H Maeda, SK Ghosh, D Toshniwal, A Mraz, T Kashiyama, ...
arXiv preprint arXiv:2008.13101, 2020
1182020
Lightweight road manager: smartphone-based automatic determination of road damage status by deep neural network
H Maeda, Y Sekimoto, T Seto
Proceedings of the 5th ACM SIGSPATIAL international workshop on mobile …, 2016
582016
Crowdsensing-based road damage detection challenge (CRDDC’2022)
D Arya, H Maeda, SK Ghosh, D Toshniwal, H Omata, T Kashiyama, ...
2022 IEEE international conference on big data (big data), 6378-6386, 2022
472022
Real-time citywide reconstruction of traffic flow from moving cameras on lightweight edge devices
A Kumar, T Kashiyama, H Maeda, H Omata, Y Sekimoto
ISPRS Journal of Photogrammetry and Remote Sensing 192, 115-129, 2022
222022
Rdd2020: an image dataset for smartphone-based road damage detection and classification
D Arya, H Maeda, SK Ghosh, D Toshniwal, H Omata, T Kashiyama, T Seto, ...
Mendel. Data 1, 2021
222021
Road damage detection using deep neural networks with images captured through a smartphone. arXiv 2018
H Maeda, Y Sekimoto, T Seto, T Kashiyama, H Omata
arXiv preprint arXiv:1801.09454, 2018
212018
From global challenges to local solutions: A review of cross-country collaborations and winning strategies in road damage detection
D Arya, H Maeda, Y Sekimoto
Advanced Engineering Informatics 60, 102388, 2024
192024
Citywide reconstruction of cross-sectional traffic flow from moving camera videos
A Kumar, T Kashiyama, H Maeda, Y Sekimoto
2021 IEEE International Conference on Big Data (Big Data), 1670-1678, 2021
172021
RDD2022-The multi-national Road Damage Dataset released through CRDDC'2022
D Arya, H Maeda, Y Sekimoto, H Omata, SK Ghosh, D Toshniwal, ...
(No Title), 2022
162022
Road rutting detection using deep learning on images
PK Saha, D Arya, A Kumar, H Maeda, Y Sekimoto
2022 IEEE international conference on big data (big data), 1362-1368, 2022
92022
Development of a large-scale roadside facility detection model based on the Mapillary Dataset
Z Yang, C Zhao, H Maeda, Y Sekimoto
Sensors 22 (24), 9992, 2022
82022
An easy infrastructure management method using on-board smartphone images and citizen reports by deep neural network
H Maeda, Y Sekimoto, T Seto
Proceedings of the Second International Conference on IoT in Urban Space …, 2016
82016
Citywide reconstruction of traffic flow using the vehicle-mounted moving camera in the carla driving simulator
A Kumar, T Kashiyama, H Maeda, H Omata, Y Sekimoto
2022 IEEE 25th International Conference on Intelligent Transportation …, 2022
62022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20