Obserwuj
Pratheeba Jeyananthan
Pratheeba Jeyananthan
Department of Computer Engineering, Faculty of Engineering, University of Jaffna
Zweryfikowany adres z eng.jfn.ac.lk
Tytuł
Cytowane przez
Cytowane przez
Rok
Prediction of masonry prism strength using machine learning technique: Effect of dimension and strength parameters
N Sathiparan, P Jeyananthan
Materials Today Communications 35, 106282, 2023
342023
Surface response regression and machine learning techniques to predict the characteristics of pervious concrete using non-destructive measurement: Ultrasonic pulse velocity and …
N Sathiparan, P Jeyananthan, DN Subramaniam
Measurement 225, 114006, 2024
222024
Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity
N Sathiparan, P Jeyananthan
Nondestructive Testing and Evaluation 39 (5), 1045-1069, 2024
202024
Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine …
N Sathiparan, P Jeyananthan, DN Subramaniam
Asian Journal of Civil Engineering 25 (1), 495-509, 2024
202024
Soft computing techniques to predict the electrical resistivity of pervious concrete
DN Subramaniam, P Jeyananthan, N Sathiparan
Asian Journal of Civil Engineering 25 (1), 711-722, 2024
172024
Prediction of compressive strength of fly ash blended pervious concrete: a machine learning approach
N Sathiparan, P Jeyananthan, DN Subramaniam
International Journal of Pavement Engineering 24 (2), 2287146, 2023
172023
Silica fume as a supplementary cementitious material in pervious concrete: prediction of compressive strength through a machine learning approach
N Sathiparan, P Jeyananthan, DN Subramaniam
Asian Journal of Civil Engineering 25 (3), 2963-2977, 2024
112024
Predicting compressive strength of quarry waste-based geopolymer mortar using machine learning algorithms incorporating mix design and ultrasonic pulse velocity
N Sathiparan, P Jeyananthan
Nondestructive Testing and Evaluation, 1-24, 2024
102024
SARS-CoV-2 diagnosis using transcriptome data: a machine learning approach
P Jeyananthan
SN Computer Science 4 (3), 218, 2023
82023
Characterization of the shape of aggregates using image analysis and machine learning classification tools
DN Subramaniam, M Sajeevan, J Pratheeba, SHB Wijekoon, ...
Geomechanics and Geoengineering 19 (4), 421-443, 2024
72024
Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients
P Jeyananthan
Pathology-Research and Practice 242, 154311, 2023
72023
Investigation of compaction on compressive strength and porosity of pervious concrete
M Sajeevan, DN Subramaniam, R Rinduja, J Pratheeba
International Journal of Pavement Research and Technology, 1-16, 2023
72023
Protein data in the identification and stage prediction of bronchopulmonary dysplasia on preterm infants: a machine learning study
P Jeyananthan, K Bandara, YGA Nayanajith
International Journal of Information Technology 16 (1), 387-392, 2024
62024
Soft computing to predict the porosity and permeability of pervious concrete based on mix design and ultrasonic pulse velocity
N Sathiparan, SH Wijekoon, P Jeyananthan, DN Subramaniam
International Journal of Pavement Engineering 25 (1), 2337916, 2024
62024
Soft computing techniques to predict the compressive strength of groundnut shell ash-blended concrete
N Sathiparan, P Jeyananthan
Journal of Engineering and Applied Science 70 (1), 134, 2023
62023
Prolonged viral shedding prediction on non-hospitalized, uncomplicated SARS-CoV-2 patients using their transcriptome data
P Jeyananthan
Computer Methods and Programs in Biomedicine Update 2, 100070, 2022
62022
Influence of metakaolin on pervious concrete strength: a machine learning approach with shapley additive explanations
N Sathiparan, P Jeyananthan, DN Subramaniam
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-28, 2024
52024
Machine learning in the identification of phenotypes of multiple sclerosis patients
P Jeyananthan
International Journal of Information Technology 16 (4), 2307-2313, 2024
32024
Predicting compressive strength of pervious concrete with fly ash: a machine learning approach and analysis of fly ash compositional influence
N Sathiparan, P Jeyananthan, DN Subramaniam
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-21, 2024
32024
Comprehensive Machine Learning Analysis on the Phenotypes of COVID-19 Patients Using Transcriptome Data
P Jeyananthan
Arab Gulf Journal of Scientific Research 39 (No. 2 (special)), 79-137, 2022
32022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20