Obserwuj
Ethan M. Rudd, PhD
Tytuł
Cytowane przez
Cytowane przez
Rok
The extreme value machine
EM Rudd, LP Jain, WJ Scheirer, TE Boult
IEEE transactions on pattern analysis and machine intelligence 40 (3), 762-768, 2017
3942017
Adversarial diversity and hard positive generation
A Rozsa, EM Rudd, TE Boult
Proceedings of the IEEE conference on computer vision and pattern …, 2016
3492016
Moon: A mixed objective optimization network for the recognition of facial attributes
EM Rudd, M Günther, TE Boult
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
2672016
A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open world solutions
EM Rudd, A Rozsa, M Günther, TE Boult
IEEE Communications Surveys & Tutorials 19 (2), 1145-1172, 2016
2032016
SOREL-20M: A large scale benchmark dataset for malicious PE detection
R Harang, EM Rudd
arXiv preprint arXiv:2012.07634, 2020
1162020
Toward open-set face recognition
M Gunther, S Cruz, EM Rudd, TE Boult
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
1032017
Facial attributes: Accuracy and adversarial robustness
A Rozsa, M Günther, EM Rudd, TE Boult
Pattern Recognition Letters 124, 100-108, 2019
712019
Are facial attributes adversarially robust?
A Rozsa, M Günther, EM Rudd, TE Boult
2016 23rd International Conference on Pattern Recognition (ICPR), 3121-3127, 2016
582016
Incremental open set intrusion recognition using extreme value machine
J Henrydoss, S Cruz, EM Rudd, M Gunther, TE Boult
2017 16th IEEE International Conference on Machine Learning and Applications …, 2017
542017
Meade: Towards a malicious email attachment detection engine
EM Rudd, R Harang, J Saxe
2018 IEEE International Symposium on Technologies for Homeland Security (HST …, 2018
462018
Open set intrusion recognition for fine-grained attack categorization
S Cruz, C Coleman, EM Rudd, TE Boult
2017 IEEE International Symposium on Technologies for Homeland Security (HST …, 2017
372017
{ALOHA}: Auxiliary Loss Optimization for Hypothesis Augmentation
EM Rudd, FN Ducau, C Wild, K Berlin, R Harang
28th USENIX Security Symposium (USENIX Security 19), 303-320, 2019
292019
Paraph: presentation attack rejection by analyzing polarization hypotheses
EM Rudd, M Günther, TE Boult
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops …, 2016
242016
Exemplar codes for facial attributes and tattoo recognition
MJ Wilber, E Rudd, B Heflin, YM Lui, TE Boult
IEEE Winter Conference on Applications of Computer Vision, 205-212, 2014
242014
Automated big text security classification
K Alzhrani, EM Rudd, TE Boult, CE Chow
2016 IEEE Conference on Intelligence and Security Informatics (ISI), 103-108, 2016
232016
Learning from context: A multi-view deep learning architecture for malware detection
A Kyadige, EM Rudd, K Berlin
2020 IEEE Security and Privacy Workshops (SPW), 1-7, 2020
192020
Automatic malware description via attribute tagging and similarity embedding
FN Ducau, EM Rudd, TM Heppner, A Long, K Berlin
arXiv preprint arXiv:1905.06262, 2019
192019
Automated us diplomatic cables security classification: Topic model pruning vs. classification based on clusters
K Alzhrani, EM Rudd, CE Chow, TE Boult
2017 IEEE International Symposium on Technologies for Homeland Security (HST …, 2017
172017
Automated big security text pruning and classification
K Alzhrani, EM Rudd, CE Chow, TE Boult
2016 IEEE International Conference on Big Data (Big Data), 3629-3637, 2016
172016
Efficient malware analysis using metric embeddings
EM Rudd, D Krisiloff, S Coull, D Olszewski, E Raff, J Holt
Digital Threats: Research and Practice 5 (1), 1-20, 2024
82024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20