Obserwuj
Changqi Luo
Changqi Luo
电子科技大学机械与电气工程学院
Zweryfikowany adres z std.uestc.edu.cn
Tytuł
Cytowane przez
Cytowane przez
Rok
Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis
C Luo, B Keshtegar, SP Zhu, O Taylan, XP Niu
Computer Methods in Applied Mechanics and Engineering 388, 114218, 2022
1682022
EMCS-SVR: hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis
C Luo, B Keshtegar, SP Zhu, X Niu
Computer Methods in Applied Mechanics and Engineering 400, 115499, 2022
852022
Physics-guided machine learning frameworks for fatigue life prediction of AM materials
L Wang, SP Zhu, C Luo, D Liao, Q Wang
International Journal of Fatigue 172, 107658, 2023
712023
Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory
JC He, SP Zhu, C Luo, X Niu, Q Wang
International Journal of Fatigue 165, 107213, 2022
662022
An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis
C Luo, SP Zhu, B Keshtegar, X Niu, O Taylan
Reliability Engineering & System Safety 237, 109377, 2023
632023
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
C Luo, SP Zhu, B Keshtegar, W Macek, R Branco, D Meng
Computer Methods in Applied Mechanics and Engineering 423, 116863, 2024
362024
Physics-informed machine learning and its structural integrity applications: state of the art
SP Zhu, L Wang, C Luo, JAFO Correia, AMP De Jesus, F Berto, Q Wang
Philosophical Transactions of the Royal Society A 381 (2260), 20220406, 2023
352023
Machine learning-based probabilistic fatigue assessment of turbine bladed disks under multisource uncertainties
SP Zhu, X Niu, B Keshtegar, C Luo, M Bagheri
International Journal of Structural Integrity 14 (6), 1000-1024, 2023
342023
Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials
L Wang, SP Zhu, C Luo, X Niu, JC He
Philosophical Transactions of the Royal Society A 381 (2260), 20220386, 2023
322023
Pressure and polymer selections for solid-state batteries investigated with high-throughput simulations
X Zhang, C Luo, N Menga, H Zhang, Y Li, SP Zhu
Cell Reports Physical Science 4 (3), 2023
142023
Probabilistic and defect tolerant fatigue assessment of AM materials under size effect
X Niu, SP Zhu, JC He, C Luo, Q Wang
Engineering Fracture Mechanics 277, 109000, 2023
142023
Probabilistic notch fatigue assessment under size effect using micromechanics-based critical distance theory
JC He, SP Zhu, C Luo, W Li, Q Liu, Y He, Q Wang
International Journal of Fatigue 183, 108280, 2024
122024
Structural optimization design of metal rubber isolator based on an ensemble surrogate model
H Ma, SP Zhu, C Luo, S Yang, D Meng
Structures 56, 104964, 2023
72023
Physics-informed neural network for creep-fatigue life prediction of Inconel 617 and interpretation of influencing factors
S Zhang, L Wang, SP Zhu, X Deng, S Fu, C Luo, Y Dong, D Yan
Materials & Design 245, 113267, 2024
42024
Uniform importance sampling with rejection control for structural reliability analysis
C Luo, SP Zhu, Y Lv, H Ma, X Liu, B Keshtegar
Computer Methods in Applied Mechanics and Engineering 436, 117707, 2025
12025
Probabilistic framework for strain-based fatigue life prediction and uncertainty quantification using interpretable machine learning
X Deng, SP Zhu, L Wang, C Luo, S Fu, Q Wang
International Journal of Fatigue 190, 108647, 2025
12025
Enhanced soft Monte Carlo simulation coupled with support vector regression for structural reliability analysis
S Yang, D Meng, H Yang, C Luo, X Su
Proceedings of the Institution of Civil Engineers-Transport, 1-16, 2024
12024
Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory (vol 165, 107213, 2022)
JC He, SP Zhu, C Luo, X Niu, Q Wang
INTERNATIONAL JOURNAL OF FATIGUE 167, 2023
2023
Corrigendum to “Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory”[Int. J. Fatigue 165 (2022) 107213]
JC He, SP Zhu, C Luo, X Niu, Q Wang
International Journal of Fatigue 167, 107393, 2023
2023
Multi-Fidelity Physics-Informed Machine Learning Framework for Fatigue Life Prediction of Additive Manufactured Materials
L Wang, S Zhu, B Wu, Z Xu, C Luo, Q Wang
Available at SSRN 5097918, 0
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20