Obserwuj
Joseph Musielewicz
Joseph Musielewicz
Chemical Engineering PHD Student, Carnegie Mellon University
Zweryfikowany adres z andrew.cmu.edu
Tytuł
Cytowane przez
Cytowane przez
Rok
FINETUNA: fine-tuning accelerated molecular simulations
J Musielewicz, X Wang, T Tian, Z Ulissi
Machine Learning: Science and Technology 3 (3), 03LT01, 2022
312022
Substrate-wrapped, single-walled carbon nanotube probes for hydrolytic enzyme characterization
NE Kallmyer, J Musielewicz, J Sutter, NF Reuel
Analytical chemistry 90 (8), 5209-5216, 2018
302018
Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials
Y Hu, J Musielewicz, ZW Ulissi, AJ Medford
Machine Learning: Science and Technology 3 (4), 045028, 2022
292022
Influence of sonication conditions and wrapping type on yield and fluorescent quality of noncovalently functionalized single-walled carbon nanotubes
NE Kallmyer, T Huynh, JC Graves, J Musielewicz, D Tamiev, NF Reuel
Carbon 139, 609-613, 2018
122018
Generalization of graph-based active learning relaxation strategies across materials
X Wang, J Musielewicz, R Tran, SK Ethirajan, X Fu, H Mera, JR Kitchin, ...
Machine Learning: Science and Technology 5 (2), 025018, 2024
52024
AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with integrated uncertainty quantification
M Shuaibi, Y Hu, X Lei, BM Comer, M Adams, J Paras, RQ Chen, E Musa, ...
Journal of Open Source Software 8 (87), 5035, 2023
42023
Improved Uncertainty Estimation of Graph Neural Network Potentials Using Engineered Latent Space Distances
J Musielewicz, J Lan, M Uyttendaele, JR Kitchin
The Journal of Physical Chemistry C 128 (49), 20799-20810, 2024
12024
Accessing Numerical Energy Hessians with Graph Neural Network Potentials and Their Application in Heterogeneous Catalysis
B Wander, J Musielewicz, R Cheula, JR Kitchin
arXiv preprint arXiv:2410.01650, 2024
12024
Improving Uncertainty Estimation Based on Latent Space Distance for Graph Neural Network Potentials
J Musielewicz, J Kitchin
2024 AIChE Annual Meeting, 2024
2024
Rotationally Invariant Latent Distances for Uncertainty Estimation of Relaxed Energy Predictions by Graph Neural Network Potentials
J Musielewicz, J Lan, M Uyttendaele, JR Kitchin
arXiv e-prints, arXiv: 2407.10844, 2024
2024
Transfer Learning of Graph Neural Networks As a General Approach to Accelerate Computational Catalysis Modeling
T Tian, A Kolluru, J Musielewicz, J Ock, Z Ulissi
2022 AIChE Annual Meeting, 2022
2022
Accelerating on-the-Fly Active Learning of Catalyst Simulations Using Large Scale Pretrained Models
J Musielewicz, M Shuaibi, Z Ulissi
2021 AIChE Annual Meeting, 2021
2021
Uncertainty quantification of wind turbine fatigue lifetime predictions through binning
Y Hu, J Musielewicz, ZW Ulissi
Predictive Uncertainty Quantification for Graph Neural Network Driven Relaxed Energy Calculations
J Musielewicz, J Lan, M Uyttendaele
NeurIPS 2023 AI for Science Workshop, 0
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–14