Obserwuj
Binh Thai Pham
Binh Thai Pham
PhD, University of Transport Technology
Zweryfikowany adres z utt.edu.vn
Tytuł
Cytowane przez
Cytowane przez
Rok
Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
A Merghadi, AP Yunus, J Dou, J Whiteley, B ThaiPham, DT Bui, R Avtar, ...
Earth-Science Reviews 207, 103225, 2020
8212020
Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
BT Pham, DT Bui, I Prakash, MB Dholakia
Catena 149, 52-63, 2017
6272017
A novel hybrid artificial intelligence approach for flood susceptibility assessment
K Chapi, VP Singh, A Shirzadi, H Shahabi, DT Bui, BT Pham, K Khosravi
Environmental modelling & software 95, 229-245, 2017
5922017
A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India)
BT Pham, B Pradhan, DT Bui, I Prakash, MB Dholakia
Environmental Modelling & Software 84, 240-250, 2016
5302016
Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
H Hong, J Liu, DT Bui, B Pradhan, TD Acharya, BT Pham, AX Zhu, ...
Catena 163, 399-413, 2018
4802018
Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural …
BT Pham, D Tien Bui, HR Pourghasemi, P Indra, MB Dholakia
Theoretical and Applied Climatology 128 (1), 255-273, 2017
3822017
Development of advanced artificial intelligence models for daily rainfall prediction
BT Pham, LM Le, TT Le, KTT Bui, VM Le, HB Ly, I Prakash
Atmospheric Research 237, 104845, 2020
2282020
A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the …
BT Pham, A Shirzadi, DT Bui, I Prakash, MB Dholakia
International Journal of Sediment Research 33 (2), 157-170, 2018
1772018
Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam
BT Pham, C Luu, T Van Phong, HD Nguyen, H Van Le, TQ Tran, HT Ta, ...
Journal of Hydrology 592, 125815, 2021
1752021
A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical …
BT Pham, D Tien Bui, MB Dholakia, I Prakash, HV Pham
Geotechnical and Geological Engineering 34 (6), 1807-1824, 2016
1682016
Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS
BT Pham, D Tien Bui, I Prakash, MB Dholakia
Natural Hazards 83 (1), 97-127, 2016
1542016
Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study
BT Pham, D Tien Bui, I Prakash
Geotechnical and Geological Engineering 35 (6), 2597-2611, 2017
1342017
A comparative study between popular statistical and machine learning methods for simulating volume of landslides
A Shirzadi, H Shahabi, K Chapi, DT Bui, BT Pham, K Shahedi, BB Ahmad
Catena 157, 213-226, 2017
1192017
Flood risk assessment using deep learning integrated with multi-criteria decision analysis
BT Pham, C Luu, D Van Dao, T Van Phong, HD Nguyen, H Van Le, ...
Knowledge-based systems 219, 106899, 2021
1182021
A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling
BT Pham, I Prakash, K Khosravi, K Chapi, PT Trinh, TQ Ngo, SV Hosseini, ...
Geocarto International 34 (13), 1385-1407, 2019
1162019
Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models
HB Ly, BT Pham, LM Le, TT Le, VM Le, PG Asteris
Neural Computing and Applications 33 (8), 3437-3458, 2021
1132021
Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India
BT Pham, K Khosravi, I Prakash
Environmental Processes 4 (3), 711-730, 2017
1112017
Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
BT Pham, C Luu, T Van Phong, PT Trinh, A Shirzadi, S Renoud, S Asadi, ...
Journal of hydrology 592, 125615, 2021
1092021
Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength
HB Ly, MH Nguyen, BT Pham
Neural Computing and Applications 33 (24), 17331-17351, 2021
1002021
Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques
BT Pham, A Jaafari, T Van Phong, HPH Yen, TT Tuyen, V Van Luong, ...
Geoscience Frontiers 12 (3), 101105, 2021
992021
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20