Obserwuj
Kiran Manjunatha
Kiran Manjunatha
Research Associate, Institute of Applied Mechanics, RWTH Aachen University
Zweryfikowany adres z rwth-aachen.de - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique
J Kochmann, K Manjunatha, C Gierden, S Wulfinghoff, B Svendsen, ...
Computer Methods in Applied Mechanics and Engineering 347, 622-638, 2019
312019
A multiphysics modeling approach for in-stent restenosis: Theoretical aspects and finite element implementation
K Manjunatha, M Behr, F Vogt, S Reese
Computers in Biology and Medicine 150, 106166, 2022
232022
Computational modeling of in-stent restenosis: Pharmacokinetic and pharmacodynamic evaluation
K Manjunatha, N Schaaps, M Behr, F Vogt, S Reese
Computers in Biology and Medicine 167, 107686, 2023
52023
In-vivo assessment of vascular injury for the prediction of in-stent restenosis
A Cornelissen, RA Florescu, S Reese, M Behr, A Ranno, K Manjunatha, ...
International Journal of Cardiology 388, 131151, 2023
42023
A model order reduction method for finite strain FFT solvers using a compressed sensing technique
C Gierden, J Kochmann, K Manjunatha, J Waimann, S Wulfinghoff, ...
PAMM 19 (1), e201900037, 2019
42019
Multi-physics modeling of in-stent restenosis
K Manjunatha, M Behr, F Vogt, S Reese
Proceedings of the 7th International Conference on Computational and …, 2022
32022
Finite element modelling of in-stent restenosis
K Manjunatha, M Behr, F Vogt, S Reese
Current Trends and Open Problems in Computational Mechanics, 305-318, 2022
32022
A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique
J Kochman, K Manjunatha, C Gierden, S Wulfinghoff, B Svendsen, ...
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 347, 622-638, 2019
32019
A physics-informed deep learning framework for modeling of coronary in-stent restenosis
J Shi, K Manjunatha, M Behr, F Vogt, S Reese
Biomechanics and Modeling in Mechanobiology 23 (2), 615-629, 2024
22024
Deep learning‐based surrogate modeling of coronary in‐stent restenosis
J Shi, K Manjunatha, S Reese
PAMM 23 (4), e202300090, 2023
22023
Solid-tire-and-hub assembly
S Purushothaman, K Manjunatha, SS Panda
US Patent 10,562,351, 2020
22020
In silico reproduction of the pathophysiology of in-stent restenosis
K Manjunatha, A Ranno, J Shi, N Schaaps, P Nilcham, A Cornelissen, ...
arXiv preprint arXiv:2401.03961, 2024
12024
Multiphysical modeling of soft tissue-stent interaction
S Reese
Deutsche Nationalbibliothek, 2023
12023
A continuum chemo‐mechano‐biological model for in‐stent restenosis with consideration of hemodynamic effects
K Manjunatha, A Ranno, J Shi, N Schaaps, P Nilcham, A Cornelissen, ...
GAMM‐Mitteilungen 48 (1), e202370008, 2025
2025
Fast simulation of coronary in‐stent restenosis: A non‐intrusive data‐driven reduced order surrogate model
J Shi, K Manjunatha, S Reese
PAMM 24 (4), e202400067, 2024
2024
Data-driven reduced order surrogate modeling for coronary in-stent restenosis
J Shi, K Manjunatha, F Vogt, S Reese
Computer Methods and Programs in Biomedicine 257, 108466, 2024
2024
In-silico analysis of hemodynamic indicators in idealized stented coronary arteries for varying stent indentation
AM Ranno, K Manjunatha, A Glitz, N Schaaps, S Reese, F Vogt, M Behr
Computer Methods in Biomechanics and Biomedical Engineering, 1-22, 2024
2024
Development and validation of a novel in-vivo vascular injury score for prediction of in-stent restenosis
A Cornelissen, RA Florescu, S Reese, M Behr, A Ranno, K Manjunatha, ...
medRxiv, 2023.03. 22.23286988, 2023
2023
A coupled multiphysics approach for modelling in-stent restenosis
M Behr
Deutsche Nationalbibliothek, 2022
2022
S02. 04 Arteries
K Manjunatha, J Frischkorn, S Reese
Book of Abstracts, 119, 2020
2020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20