Obserwuj
Matthew R. Carbone
Tytuł
Cytowane przez
Cytowane przez
Rok
Random Forest Machine Learning Models for Interpretable X-Ray Absorption Near-Edge Structure Spectrum-Property Relationships
SB Torrisi, MR Carbone, BA Rohr, JH Montoya, Y Ha, J Yano, SK Suram, ...
npj Computational Materials 6, 109, 2020
1332020
Classification of local chemical environments from x-ray absorption spectra using supervised machine learning
MR Carbone, S Yoo, M Topsakal, D Lu
Physical Review Materials 3 (3), 033604, 2019
1132019
Machine-learning X-ray absorption spectra to quantitative accuracy
MR Carbone, M Topsakal, D Lu, S Yoo
Physical Review Letters 124 (15), 156401, 2020
1112020
When not to use machine learning: A perspective on potential and limitations
MR Carbone
MRS Bulletin 47, 968–974, 2022
432022
Bond-Peierls polaron: Moderate mass enhancement and current-carrying ground state
MR Carbone, AJ Millis, DR Reichman, J Sous
Physical Review B 104 (14), L140307, 2021
312021
Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides
MR Carbone, MZ Mayers, DR Reichman
The Journal of Chemical Physics 152 (19), 2020
212020
Uncertainty-aware predictions of molecular x-ray absorption spectra using neural network ensembles
A Ghose, M Segal, F Meng, Z Liang, MS Hybertsen, X Qu, E Stavitski, ...
Physical Review Research 5 (1), 013180, 2023
192023
Predicting impurity spectral functions using machine learning
EJ Sturm, MR Carbone, D Lu, A Weichselbaum, RM Konik
Physical Review B 103 (24), 245118, 2021
192021
Numerically exact generalized Green's function cluster expansions for electron-phonon problems
MR Carbone, DR Reichman, J Sous
Physical Review B 104 (3), 035106, 2021
172021
Machine learning of Kondo physics using variational autoencoders and symbolic regression
C Miles, MR Carbone, EJ Sturm, D Lu, A Weichselbaum, K Barros, ...
Physical Review B 104 (23), 235111, 2021
162021
Simulated sulfur K-edge X-ray absorption spectroscopy database of lithium thiophosphate solid electrolytes
H Guo, MR Carbone, C Cao, J Qu, Y Du, SM Bak, C Weiland, F Wang, ...
Scientific data 10 (1), 349, 2023
152023
Harnessing neural networks for elucidating x-ray absorption structure–spectrum relationships in amorphous carbon
H Kwon, W Sun, T Hsu, W Jeong, F Aydin, S Sharma, F Meng, ...
The Journal of Physical Chemistry C 127 (33), 16473-16484, 2023
122023
Lightshow: a Python package for generating computational x-ray absorption spectroscopy input files
MR Carbone, F Meng, C Vorwerk, B Maurer, F Peschel, X Qu, E Stavitski, ...
Journal of Open Source Software 8 (5182), 2023
102023
Effective Trap-like Activated Dynamics in a Continuous Landscape
MR Carbone, V Astuti, M Baity-Jesi
Physical Review E 101 (5), 052304, 2020
102020
Machine learning for the advancement of membrane science and technology: A critical review
G Ignacz, L Bader, AK Beke, Y Ghunaim, T Shastry, H Vovusha, ...
Journal of Membrane Science, 123256, 2024
92024
Self-driving multimodal studies at user facilities
PM Maffettone, DB Allan, SI Campbell, MR Carbone, TA Caswell, ...
arXiv preprint arXiv:2301.09177, 2023
82023
Decoding structure-spectrum relationships with physically organized latent spaces
Z Liang, MR Carbone, W Chen, F Meng, E Stavitski, D Lu, MS Hybertsen, ...
Physical Review Materials 7 (5), 053802, 2023
72023
Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion models
H Kwon, T Hsu, W Sun, W Jeong, F Aydin, J Chapman, X Chen, V Lordi, ...
Machine Learning: Science and Technology 5 (4), 045037, 2024
62024
Competition between energy-and entropy-driven activation in glasses
MR Carbone, M Baity-Jesi
Physical Review E 106 (2), 024603, 2022
62022
Machine learning-guided discovery of polymer membranes for CO2 separation with genetic algorithm
Y Basdogan, DR Pollard, T Shastry, MR Carbone, SK Kumar, ZG Wang
Journal of Membrane Science 712, 123169, 2024
52024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20