Artykuły udostępnione publicznie: - Dinesh JayaramanWięcej informacji
Dostępne w jakimś miejscu: 27
Probabilistic modeling for human mesh recovery
N Kolotouros, G Pavlakos, D Jayaraman, K Daniilidis
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
Upoważnienia: US National Science Foundation, US Department of Defense
Pano2Vid: Automatic cinematography for watching 360◦ videos
YC Su, D Jayaraman, K Grauman
ACCV 2016, 2016
Upoważnienia: US National Science Foundation
Manipulation by feel: Touch-based control with deep predictive models
S Tian, F Ebert, D Jayaraman, M Mudigonda, C Finn, R Calandra, ...
ICRA, 2019
Upoważnienia: US National Science Foundation, US Department of Defense
Learning to look around: Intelligently exploring unseen environments for unknown tasks
D Jayaraman, K Grauman
Proceedings of the IEEE conference on computer vision and pattern …, 2018
Upoważnienia: US Department of Defense
Liv: Language-image representations and rewards for robotic control
YJ Ma, V Kumar, A Zhang, O Bastani, D Jayaraman
International Conference on Machine Learning, 23301-23320, 2023
Upoważnienia: US Department of Defense
An exploration of embodied visual exploration
SK Ramakrishnan, D Jayaraman, K Grauman
International Journal of Computer Vision 129 (5), 1616-1649, 2021
Upoważnienia: US National Science Foundation, US Department of Defense
Conservative offline distributional reinforcement learning
Y Ma, D Jayaraman, O Bastani
Advances in neural information processing systems 34, 19235-19247, 2021
Upoważnienia: US National Science Foundation, US Department of Defense
Smirl: Surprise minimizing reinforcement learning in unstable environments
G Berseth, D Geng, C Devin, N Rhinehart, C Finn, D Jayaraman, S Levine
arXiv preprint arXiv:1912.05510, 2019
Upoważnienia: US National Science Foundation, US Department of Defense
Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching
YJ Ma, A Shen, D Jayaraman, O Bastani
ICML, 2022
Upoważnienia: US National Science Foundation, US Department of Defense
Offline Goal-Conditioned Reinforcement Learning via -Advantage Regression
JY Ma, J Yan, D Jayaraman, O Bastani
Advances in neural information processing systems 35, 310-323, 2022
Upoważnienia: US National Science Foundation, US Department of Defense
End-to-end policy learning for active visual categorization
D Jayaraman, K Grauman
IEEE transactions on pattern analysis and machine intelligence 41 (7), 1601-1614, 2018
Upoważnienia: US National Science Foundation, US Department of Defense
REPLAB: A reproducible low-cost arm benchmark for robotic learning
B Yang, D Jayaraman, J Zhang, S Levine
2019 International Conference on Robotics and Automation (ICRA), 8691-8697, 2019
Upoważnienia: US National Science Foundation, US Department of Defense
Emergence of exploratory look-around behaviors through active observation completion
SK Ramakrishnan, D Jayaraman, K Grauman
Science Robotics 4 (30), eaaw6326, 2019
Upoważnienia: US Department of Defense
Learning Image Representations Tied to Egomotion from Unlabeled Video
D Jayaraman, K Grauman
International Journal of Computer Vision Special Issue of Best Papers from …, 2017
Upoważnienia: US National Science Foundation, US Department of Defense
Likelihood-based diverse sampling for trajectory forecasting
YJ Ma, JP Inala, D Jayaraman, O Bastani
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
Upoważnienia: US National Science Foundation
Shapecodes: self-supervised feature learning by lifting views to viewgrids
D Jayaraman, R Gao, K Grauman
Proceedings of the European Conference on Computer Vision (ECCV), 120-136, 2018
Upoważnienia: US Department of Defense
Conservative and adaptive penalty for model-based safe reinforcement learning
YJ Ma, A Shen, O Bastani, D Jayaraman
Proceedings of the AAAI Conference on Artificial Intelligence 36 (5), 5404-5412, 2022
Upoważnienia: US National Science Foundation, US Department of Defense
Femtomolar SARS-CoV-2 antigen detection using the microbubbling digital assay with smartphone readout enables antigen burden quantitation and tracking
H Chen, Z Li, S Feng, M Richard-Greenblatt, E Hutson, S Andrianus, ...
Clinical Chemistry 68 (1), 230-239, 2022
Upoważnienia: US National Science Foundation, Bill & Melinda Gates Foundation, US National …
Divide, share, and conquer: Multi-task attribute learning with selective sharing
CY Chen, D Jayaraman, F Sha, K Grauman
Visual attributes, 49-85, 2017
Upoważnienia: US National Science Foundation, US Department of Defense
How are learned perception-based controllers impacted by the limits of robust control?
J Xu, B Lee, N Matni, D Jayaraman
Learning for Dynamics and Control, 954-966, 2021
Upoważnienia: US National Science Foundation, US Department of Defense
Informacje na temat publikacji i finansowania automatycznie określa program komputerowy