Obserwuj
Khemraj Shukla
Khemraj Shukla
Rice University
Zweryfikowany adres z gatech.edu
Tytuł
Cytowane przez
Cytowane przez
Rok
Parallel physics-informed neural networks via domain decomposition
K Shukla, AD Jagtap, GE Karniadakis
Journal of Computational Physics 447, 110683, 2021
3232021
Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversions
M Rasht‐Behesht, C Huber, K Shukla, GE Karniadakis
Journal of Geophysical Research: Solid Earth 127 (5), e2021JB023120, 2022
3132022
Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
K Shukla, PC Di Leoni, J Blackshire, D Sparkman, GE Karniadakis
J Nondestruct Eval 39 (61), 2020
2672020
A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: A promising approach for solving inverse problems
K Shukla, AD Jagtap, JL Blackshire, D Sparkman, GE Karniadakis
IEEE Signal Processing Magazine 39 (1), 68-77, 2021
1092021
Learning two-phase microstructure evolution using neural operators and autoencoder architectures
V Oommen, K Shukla, S Goswami, R Dingreville, GE Karniadakis
nature (npj) computational materials 8 (190), 2022
1072022
Tackling the curse of dimensionality with physics-informed neural networks
Z Hu, K Shukla, GE Karniadakis, K Kawaguchi
Neural Networks 176, 106369, 2024
882024
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform
I Pal, SK Nath, K Shukla, DK Pal, A Raj, KKS Thingbaijam, BK Bansal
Natural hazards 45, 333-377, 2008
882008
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K Shukla, JD Toscano, Z Wang, Z Zou, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 431, 117290, 2024
572024
Deep neural operators as accurate surrogates for shape optimization
K Shukla, V Oommen, A Peyvan, M Penwarden, N Plewacki, L Bravo, ...
Engineering Applications of Artificial Intelligence 129, 107615, 2024
56*2024
Scalable algorithms for physics-informed neural and graph networks
K Shukla, M Xu, N Trask, GE Karniadakis
Data-Centric Engineering 3, e24, 2022
452022
Mycrunchgpt: A llm assisted framework for scientific machine learning
V Kumar, L Gleyzer, A Kahana, K Shukla, GE Karniadakis
Journal of Machine Learning for Modeling and Computing 4 (4), 2023
322023
AI-Aristotle: A physics-informed framework for systems biology gray-box identification
N Ahmadi Daryakenari, M De Florio, K Shukla, GE Karniadakis
PLOS Computational Biology 20 (3), e1011916, 2024
302024
A weight-adjusted discontinuous Galerkin method for the poroelastic wave equation: Penalty fluxes and micro-heterogeneities
K Shukla, J Chan, MV de Hoop, P Jaiswal
Journal of Computational Physics 403, 109061, 2020
282020
Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry
SK Nath, K Shukla, M Vyas
Journal of earth system science 117, 649-670, 2008
282008
A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
K Shukla, JS Hesthaven, JM Carcione, R Ye, J de la Puente, P Jaiswal
Computational Geosciences 23, 595-615, 2019
212019
High-order methods for hypersonic flows with strong shocks and real chemistry
A Peyvan, K Shukla, J Chan, G Karniadakis
Journal of Computational Physics 490, 112310, 2023
192023
A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data
E Kiyani, K Shukla, GE Karniadakis, M Karttunen
Computer Methods in Applied Mechanics and Engineering, 415 (https://doi.org …, 2023
192023
Machine learning as a seismic prior velocity model building method for full-waveform inversion: A case study from Colombia
U Iturrarán-Viveros, AM Muñoz-García, O Castillo-Reyes, K Shukla
Pure and Applied Geophysics 178 (2), 423-448, 2021
172021
Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method
K Shukla, JM Carcione, JS Hesthaven, E L'heureux
The Journal of the Acoustical Society of America 147 (5), 3136-3150, 2020
162020
Rethinking materials simulations: Blending direct numerical simulations with neural operators
V Oommen, K Shukla, S Desai, R Dingreville, GE Karniadakis
npj Computational Materials 10 (1), 145, 2024
102024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20