Obserwuj
Hyeongmin Kim
Tytuł
Cytowane przez
Cytowane przez
Rok
A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map
CH Park, H Kim, C Suh, M Chae, H Yoon, BD Youn
Reliability Engineering & System Safety 226, 108715, 2022
442022
MPARN: multi-scale path attention residual network for fault diagnosis of rotating machines
H Kim, CH Park, C Suh, M Chae, H Yoon, BD Youn
Journal of Computational Design and Engineering 10 (2), 860-872, 2023
152023
Drive-tolerant current residual variance (DTCRV) for fault detection of a permanent magnet synchronous motor under operational speed and load torque conditions
CH Park, J Lee, H Kim, C Suh, M Youn, Y Shin, SH Ahn, BD Youn
IEEE Access 9, 49055-49068, 2021
132021
Stator current operation compensation (SCOC): A novel preprocessing method for deep learning-based fault diagnosis of permanent magnet synchronous motors under variable …
H Kim, CH Park, C Suh, M Chae, HJ Oh, H Yoon, BD Youn
Measurement 221, 113446, 2023
92023
Opt-TCAE: Optimal temporal convolutional auto-encoder for boiler tube leakage detection in a thermal power plant using multi-sensor data
H Kim, JU Ko, K Na, H Lee, H Kim, J Son, H Yoon, BD Youn
Expert Systems with Applications 215, 119377, 2023
92023
Self-supervised feature learning for motor fault diagnosis under various torque conditions
SK Lee, H Kim, M Chae, HJ Oh, H Yoon, BD Youn
Knowledge-Based Systems 288, 111465, 2024
42024
PCDC: Prototype-assisted dual-contrastive learning with depthwise separable convolutional neural network for few-shot fault diagnosis of permanent magnet synchronous motors …
M Chae, H Kim, HJ Oh, CH Park, C Suh, H Yoon, BD Youn
Journal of Computational Design and Engineering, qwae052, 2024
32024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–7