Obserwuj
Jonas Kohler
Jonas Kohler
Zweryfikowany adres z inf.ethz.ch - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Sub-sampled cubic regularization for non-convex optimization
JM Kohler, A Lucchi
ICML 2017, 2017
2102017
Escaping Saddles with Stochastic Gradients
H Daneshmand*, J Kohler*, A Lucchi, T Hofmann
ICML 2018, 2018
1792018
Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization
J Kohler*, H Daneshmand*, A Lucchi, M Zhou, K Neymeyr, T Hofmann
AISTATS 2019, 2019
159*2019
Movie gen: A cast of media foundation models
arXiv preprint arXiv:2409.15477, 2024
92*2024
Batch normalization provably avoids ranks collapse for randomly initialised deep networks
H Daneshmand*, J Kohler*, F Bach, T Hofmann, A Lucchi
NeurIPS 2020, 2020
712020
Learning Generative Models of Textured 3D Meshes from Real-World Images
D Pavllo, J Kohler, T Hofmann, A Lucchi
ICCV 2021, 2021
552021
This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks
A Hoffmann, C Fanconi, R Rade, J Kohler
ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend …, 2021
542021
The Role of Memory in Stochastic Optimization
A Orvieto, J Kohler, A Lucchi
UAI, 2019, 2019
48*2019
Cache Me if You Can: Accelerating Diffusion Models through Block Caching
F Wimbauer, B Wu, E Schoenfeld, X Dai, J Hou, Z He, A Sanakoyeu, ...
CVPR 2024, 2023
342023
Synthesizing Speech from Intracranial Depth Electrodes using an Encoder-Decoder Framework
J Kohler, MC Ottenhoff, S Goulis, M Angrick, AJ Colon, L Wagner, ...
Neurons, Behavior, Data analysis, and Theory (NBDT), 2021
312021
Safe Deep Reinforcement Learning for Multi-Agent Systems with Continuous Action Spaces
Z Sheebaelhamd, K Zisis, A Nisioti, D Gkouletsos, D Pavllo, J Kohler
ICML 2021 Workshop on Reinforcement Learning for Real Life Workshop, 2021
212021
Adaptive norms for deep learning with regularised Newton methods
J Kohler, L Adolphs, A Lucchi
NeurIPS 2019 Workshop: Beyond First-Order Optimization Methods in Machine …, 2019
20*2019
Vanishing Curvature in Randomly Initialized Deep ReLU Networks.
A Orvieto*, J Kohler*, D Pavllo, T Hofmann, A Lucchi
AISTATS 2022, 7942-7975, 2022
17*2022
A Sub-sampled Tensor Method for Non-convex Optimization
A Lucchi, J Kohler
IMA Journal of Numerical Analysis 43 (5), 2019
17*2019
Imagine flash: Accelerating emu diffusion models with backward distillation
J Kohler, A Pumarola, E Schönfeld, A Sanakoyeu, R Sumbaly, P Vajda, ...
arXiv preprint arXiv:2405.05224, 2024
162024
Adaptive guidance: Training-free acceleration of conditional diffusion models
A Castillo*, J Kohler*, JC Pérez*, JP Pérez, A Pumarola, B Ghanem, ...
AAAI 2025, 2023
72023
Two-Level K-FAC Preconditioning for Deep Learning
N Tselepidis, J Kohler, A Orvieto
NeurIPS 2020 Workshop on Optimization for Machine Learning (OPT2020), 2020
72020
fMPI: Fast Novel View Synthesis in the Wild with Layered Scene Representations
J Kohler, NG Sanchez, L Cavalli, C Herold, A Pumarola, AG Garcia, ...
CV4MR 2024, 2023
12023
Judge Decoding: Faster Speculative Sampling Requires Going Beyond Model Alignment
G Bachmann, S Anagnostidis, A Pumarola, M Georgopoulos, ...
ICLR 2025 (Oral), 2025
2025
Movie gen: A cast of media foundation models
A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, ...
arXiv preprint arXiv:2410.13720, 2024
2024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20