Obserwuj
Satya Narayan Shukla
Satya Narayan Shukla
Meta AI
Zweryfikowany adres z meta.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Multi-time attention networks for irregularly sampled time series
SN Shukla, BM Marlin
arXiv preprint arXiv:2101.10318, 2021
2172021
Interpolation-prediction networks for irregularly sampled time series
SN Shukla, BM Marlin
arXiv preprint arXiv:1909.07782, 2019
1832019
The belebele benchmark: a parallel reading comprehension dataset in 122 language variants
L Bandarkar, D Liang, B Muller, M Artetxe, SN Shukla, D Husa, N Goyal, ...
arXiv preprint arXiv:2308.16884, 2023
692023
Black-box adversarial attacks with bayesian optimization
SN Shukla, AK Sahu, D Willmott, JZ Kolter
arXiv preprint arXiv:1909.13857, 2019
442019
Simple and efficient hard label black-box adversarial attacks in low query budget regimes
SN Shukla, AK Sahu, D Willmott, Z Kolter
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
382021
Noninvasive cuffless blood pressure measurement by vascular transit time
SN Shukla, K Kakwani, A Patra, BK Lahkar, VK Gupta, A Jayakrishna, ...
2015 28th International Conference on VLSI Design, 535-540, 2015
342015
A survey on principles, models and methods for learning from irregularly sampled time series
SN Shukla, BM Marlin
arXiv preprint arXiv:2012.00168, 2020
282020
Heteroscedastic temporal variational autoencoder for irregularly sampled time series
SN Shukla, BM Marlin
arXiv preprint arXiv:2107.11350, 2021
252021
Integrating physiological time series and clinical notes with deep learning for improved ICU mortality prediction
SN Shukla, BM Marlin
arXiv preprint arXiv:2003.11059, 2020
202020
Learning to localize objects improves spatial reasoning in visual-llms
K Ranasinghe, SN Shukla, O Poursaeed, MS Ryoo, TY Lin
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
172024
Estimation of blood pressure from non-invasive data
SN Shukla
2017 39th Annual International Conference of the IEEE Engineering in …, 2017
172017
A survey on principles, models and methods for learning from irregularly sampled time series: From discretization to attention and invariance
SN Shukla, BM Marlin
arXiv preprint, 2020
132020
Modeling irregularly sampled clinical time series
SN Shukla, BM Marlin
arXiv preprint arXiv:1812.00531, 2018
102018
Assessing the adversarial robustness of monte carlo and distillation methods for deep bayesian neural network classification
MP Vadera, SN Shukla, B Jalaian, BM Marlin
arXiv preprint arXiv:2002.02842, 2020
62020
Hard label black-box adversarial attacks in low query budget regimes
SN Shukla, AK Sahu, D Willmott, JZ Kolter
arXiv preprint arXiv:2007.07210 2 (5), 13, 2020
62020
Revisiting kernel temporal segmentation as an adaptive tokenizer for long-form video understanding
M Afham, SN Shukla, O Poursaeed, P Zhang, A Shah, S Lim
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
42023
Bayesian-optimization-based query-efficient black-box adversarial attacks
SN Shukla, AK Sahu, D Willmott, JZ Kolter
US Patent 11,494,639, 2022
42022
Prediction and imputation in irregularly sampled clinical time series data using hierarchical linear dynamical models
A Sengupta, AP Prathosh, SN Shukla, V Rajan, CK Reddy
2017 39th Annual International Conference of the IEEE Engineering in …, 2017
42017
Deep Learning Models for Irregularly Sampled and Incomplete Time Series
SN Shukla
12021
Adversarial distillation of bayesian neural networks
SN Shukla, MP Vadera, B Jalaian, BM Marlin
12020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20