Obserwuj
Rohan Anil
Rohan Anil
Distinguished Engineer, Google DeepMind
Zweryfikowany adres z google.com
Tytuł
Cytowane przez
Cytowane przez
Rok
Wide & deep learning for recommender systems
HT Cheng, L Koc, J Harmsen, T Shaked, T Chandra, H Aradhye, ...
Proceedings of the 1st workshop on deep learning for recommender systems, 7-10, 2016
43942016
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
24942023
Palm 2 technical report
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
arXiv preprint arXiv:2305.10403, 2023
15582023
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
9352024
Gemma: Open models based on gemini research and technology
G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ...
arXiv preprint arXiv:2403.08295, 2024
9252024
Large scale distributed neural network training through online distillation
R Anil, G Pereyra, A Passos, R Ormandi, GE Dahl, GE Hinton
arXiv preprint arXiv:1804.03235, 2018
5202018
Knowledge distillation: A good teacher is patient and consistent
L Beyer, X Zhai, A Royer, L Markeeva, R Anil, A Kolesnikov
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
3372022
Gemini: A family of highly capable multimodal models
R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805 1, 2023
3052023
Efficiently identifying task groupings for multi-task learning
C Fifty, E Amid, Z Zhao, T Yu, R Anil, C Finn
Advances in Neural Information Processing Systems 34, 27503-27516, 2021
2852021
Lingvo: a modular and scalable framework for sequence-to-sequence modeling
J Shen, P Nguyen, Y Wu, Z Chen, MX Chen, Y Jia, A Kannan, T Sainath, ...
arXiv preprint arXiv:1902.08295, 2019
2142019
Tf-ranking: Scalable tensorflow library for learning-to-rank
RK Pasumarthi, S Bruch, X Wang, C Li, M Bendersky, M Najork, J Pfeifer, ...
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
1622019
Large-scale differentially private BERT
R Anil, B Ghazi, V Gupta, R Kumar, P Manurangsi
arXiv preprint arXiv:2108.01624, 2021
1452021
Robust bi-tempered logistic loss based on bregman divergences
E Amid, MKK Warmuth, R Anil, T Koren
Advances in Neural Information Processing Systems 32, 2019
1442019
Scalable second order optimization for deep learning
R Anil, V Gupta, T Koren, K Regan, Y Singer
arXiv preprint arXiv:2002.09018, 2020
952020
Memory efficient adaptive optimization
R Anil, V Gupta, T Koren, Y Singer
Advances in Neural Information Processing Systems 32, 2019
852019
Sunipa Dev
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxiaoyu …, 2023
752023
PaLM 2 Technical Report; 2023
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
arXiv preprint arXiv:2305.10403, 2023
552023
A large batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes
Z Nado, JM Gilmer, CJ Shallue, R Anil, GE Dahl
arXiv preprint arXiv:2102.06356, 2021
422021
Wide and deep machine learning models
T Shaked, R Anil, HB Aradhye, G Anderson, W Chai, ML Koc, J Harmsen, ...
US Patent 10,762,422, 2020
422020
Disentangling adaptive gradient methods from learning rates
N Agarwal, R Anil, E Hazan, T Koren, C Zhang
arXiv preprint arXiv:2002.11803, 2020
412020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20