Obserwuj
Yongkai Wu
Tytuł
Cytowane przez
Cytowane przez
Rok
A causal framework for discovering and removing direct and indirect discrimination
L Zhang, Y Wu, X Wu
IJCAI 2017, 2017
2312017
Pc-fairness: A unified framework for measuring causality-based fairness
Y Wu, L Zhang, X Wu, H Tong
Advances in neural information processing systems 32, 2019
1462019
Counterfactual Fairness: Unidentification, Bound and Algorithm
Y Wu, L Zhang, X Wu
IJCAI 2019, 1438-1444, 2019
1312019
Achieving Causal Fairness through Generative Adversarial Networks
D Xu, Y Wu, S Yuan, L Zhang, X Wu
IJCAI 2019, 1452-1458, 2019
1202019
On convexity and bounds of fairness-aware classification
Y Wu, L Zhang, X Wu
The World Wide Web Conference, 3356-3362, 2019
100*2019
Achieving non-discrimination in data release
L Zhang, Y Wu, X Wu
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge …, 2017
892017
On discrimination discovery and removal in ranked data using causal graph
Y Wu, L Zhang, X Wu
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
672018
Situation Testing-Based Discrimination Discovery: A Causal Inference Approach.
L Zhang, Y Wu, X Wu
IJCAI 16, 2718-2724, 2016
662016
Causal modeling-based discrimination discovery and removal: Criteria, bounds, and algorithms
L Zhang, Y Wu, X Wu
IEEE Transactions on Knowledge and Data Engineering 31 (11), 2035-2050, 2018
642018
Fairness through equality of effort
W Huang, Y Wu, L Zhang, X Wu
Companion Proceedings of the Web Conference 2020, 743-751, 2020
472020
Achieving non-discrimination in prediction
L Zhang, Y Wu, X Wu
IJCAI 2018, 2017
432017
A generative adversarial framework for bounding confounded causal effects
Y Hu, Y Wu, L Zhang, X Wu
Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 12104 …, 2021
352021
On discrimination discovery using causal networks
L Zhang, Y Wu, X Wu
Social, Cultural, and Behavioral Modeling: 9th International Conference, SBP …, 2016
252016
Using loglinear model for discrimination discovery and prevention
Y Wu, X Wu
2016 IEEE International Conference on Data Science and Advanced Analytics …, 2016
202016
Fair multiple decision making through soft interventions
Y Hu, Y Wu, L Zhang, X Wu
Advances in neural information processing systems 33, 17965-17975, 2020
162020
Achieving counterfactual fairness for anomaly detection
X Han, L Zhang, Y Wu, S Yuan
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 55-66, 2023
122023
Learning causally disentangled representations via the principle of independent causal mechanisms
A Komanduri, Y Wu, F Chen, X Wu
arXiv preprint arXiv:2306.01213, 2023
112023
Scm-vae: Learning identifiable causal representations via structural knowledge
A Komanduri, Y Wu, W Huang, F Chen, X Wu
2022 IEEE International Conference on Big Data (Big Data), 1014-1023, 2022
112022
From identifiable causal representations to controllable counterfactual generation: A survey on causal generative modeling
A Komanduri, X Wu, Y Wu, F Chen
arXiv preprint arXiv:2310.11011, 2023
102023
On root cause localization and anomaly mitigation through causal inference
X Han, L Zhang, Y Wu, S Yuan
Proceedings of the 32nd ACM International Conference on Information and …, 2023
82023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20