Obserwuj
Logan Blakely
Tytuł
Cytowane przez
Cytowane przez
Rok
Perspectives on the integration between first-principles and data-driven modeling
W Bradley, J Kim, Z Kilwein, L Blakely, M Eydenberg, J Jalvin, C Laird, ...
Computers & Chemical Engineering 166, 107898, 2022
872022
A deep neural network approach for behind-the-meter residential PV size, tilt and azimuth estimation
K Mason, MJ Reno, L Blakely, S Vejdan, S Grijalva
Solar Energy 196, 260-269, 2020
662020
Spectral clustering for customer phase identification using AMI voltage timeseries
L Blakely, MJ Reno, W Feng
2019 IEEE Power and Energy Conference at Illinois (PECI), 1-7, 2019
662019
930 berg, Jordan Jalvin, Carl Laird, and Fani Boukouvala
W Bradley, J Kim, Z Kilwein, L Blakely, M Eyden
Perspectives on the integration between first-principles and data-driven …, 2022
572022
Identifying common errors in distribution system models
L Blakely, MJ Reno, J Peppanen
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 3132-3139, 2019
402019
Assessment of measurement-based phase identification methods
F Therrien, L Blakely, MJ Reno
IEEE Open Access Journal of Power and Energy 8, 128-137, 2021
352021
Phase identification using co‐association matrix ensemble clustering
L Blakely, MJ Reno
IET Smart Grid 3 (4), 490-499, 2020
322020
AMI data quality and collection method considerations for improving the accuracy of distribution models
L Blakely, MJ Reno, K Ashok
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2045-2052, 2019
312019
Systematic study of data requirements and AMI capabilities for smart meter analytics
K Ashok, MJ Reno, L Blakely, D Divan
2019 IEEE 7th International Conference on Smart Energy Grid Engineering …, 2019
222019
Identifying errors in service transformer connections
L Blakely, MJ Reno
2020 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2020
162020
Identification and correction of errors in pairing AMI meters and transformers
L Blakely, MJ Reno
2021 IEEE Power and Energy Conference at Illinois (PECI), 1-8, 2021
142021
Estimation of PV location in distribution systems based on voltage sensitivities
S Grijalva, AU Khan, JS Mbeleg, C Gomez-Peces, MJ Reno, L Blakely
2020 52nd North American Power Symposium (NAPS), 1-6, 2021
132021
Improving behind-the-meter PV impact studies with data-driven modeling and analysis
JA Azzolini, S Talkington, MJ Reno, S Grijalva, L Blakely, D Pinney, ...
2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), 204-204, 2022
122022
Decision tree ensemble machine learning for rapid QSTS simulations
L Blakely, MJ Reno, RJ Broderick
2018 IEEE Power & Energy Society Innovative Smart Grid Technologies …, 2018
122018
Imofi-intelligent model fidelity: Physics-based data-driven grid modeling to accelerate accurate pv integration final report
M Reno, L Blakely, RD Trevizan, B Pena, M Lave, J Azzolini, J Yusuf, ...
United States, 2022
112022
Machine learning for rapid qsts simulations using neural networks
MJ Reno, RJ Broderick, L Blakely
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 1573-1578, 2017
112017
Physics-informed machine learning with optimization-based guarantees: Applications to AC power flow
J Jalving, M Eydenberg, L Blakely, A Castillo, Z Kilwein, JK Skolfield, ...
International Journal of Electrical Power & Energy Systems 157, 109741, 2024
102024
Estimation of PV location based on voltage sensitivities in distribution systems with discrete voltage regulation equipment
C Gómez-Peces, S Grijalva, MJ Reno, L Blakely
2021 IEEE Madrid PowerTech, 1-6, 2021
102021
Evaluation and comparison of machine learning techniques for rapid qsts simulations
L Blakely, MJ Reno, RJ Broderick
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018
72018
Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV
RJ Broderick, MJ Reno, MS Lave, JA Azzolini, L Blakely, J Galtieri, ...
Sandia National Lab.(SNL-CA), Livermore, CA (United States); Sandia National …, 2021
62021
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20