Obserwuj
Tao Li
Tytuł
Cytowane przez
Cytowane przez
Rok
Subspace adversarial training
T Li, Y Wu, S Chen, K Fang, X Huang
CVPR 2022 oral, 13409-13418, 2022
792022
Low dimensional trajectory hypothesis is true: Dnns can be trained in tiny subspaces
T Li, L Tan, Z Huang, Q Tao, Y Liu, X Huang
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (3), 3411-3420, 2022
45*2022
Trainable weight averaging: Efficient training by optimizing historical solutions
T Li, Z Huang, Q Tao, Y Wu, X Huang
The Eleventh International Conference on Learning Representations, 2022
19*2022
Friendly sharpness-aware minimization
T Li, P Zhou, Z He, X Cheng, X Huang
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2024), 2024
122024
Towards robust neural networks via orthogonal diversity
K Fang, Q Tao, Y Wu, T Li, J Cai, F Cai, X Huang, J Yang
Pattern Recognition 149, 110281, 2024
8*2024
Investigating catastrophic overfitting in fast adversarial training: a self-fitting perspective
Z He, T Li, S Chen, X Huang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
82023
PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning
J Zou, M Zhou, T Li, S Han, D Zhang
EMNLP 2024 Findings, 2024
62024
Efficient generalization improvement guided by random weight perturbation
T Li, W Yan, Z Lei, Y Wu, K Fang, M Yang, X Huang
arXiv preprint arXiv:2211.11489, 2022
62022
Low-dimensional gradient helps out-of-distribution detection
Y Wu, T Li, X Cheng, J Yang, X Huang
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
42024
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
T Li, Q Tao, W Yan, Z Lei, Y Wu, K Fang, M He, X Huang
Transactions on Machine Learning Research, 2024
42024
On multi-head ensemble of smoothed classifiers for certified robustness
K Fang, Q Tao, Y Wu, T Li, X Huang, J Yang
arXiv preprint arXiv:2211.10882, 2022
42022
Learning scalable model soup on a single gpu: An efficient subspace training strategy
T Li, W Jiang, F Liu, X Huang, JT Kwok
European Conference on Computer Vision, 342-359, 2024
3*2024
Towards Natural Machine Unlearning
Z He, T Li, X Cheng, Z Huang, X Huang
arXiv preprint arXiv:2405.15495, 2024
22024
Better Loss Landscape Visualization for Deep Neural Networks with Trajectory Information
R Ding, T Li, X Huang
Asian Conference on Machine Learning, 311-326, 2024
22024
Online Continual Learning via Logit Adjusted Softmax
Z Huang, T Li, C Yuan, Y Wu, X Huang
Transactions on Machine Learning Research, 2023
22023
Trainable weight averaging: A general approach for subspace training
T Li, Z Huang, Y Wu, Z He, Q Tao, X Huang, CJ Lin
arXiv preprint arXiv:2205.13104, 2022
12022
Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement
Z Huang, X Cheng, JH Zheng, H Wang, Z He, T Li, X Huang
NeurIPS 2024 (Spotlight), 2024
2024
Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape
T Li, Z He, Y Li, Y Wang, L Shang, X Huang
arXiv preprint arXiv:2409.14396, 2024
2024
SS-ADA: A Semi-Supervised Active Domain Adaptation Framework for Semantic Segmentation
W Yan, Y Qian, Y Li, T Li, C Wang, M Yang
arXiv preprint arXiv:2407.12788, 2024
2024
Defending Against Similarity Shift Attack for EaaS via Adaptive Multi-Target Watermarking
Z Yang, P Chen, T Li, K Liu, Y Huang, X Lin
Information Sciences, 120893, 2024
2024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20