Making deep neural networks right for the right scientific reasons by interacting with their explanations P Schramowski, W Stammer, S Teso, A Brugger, F Herbert, X Shao, ... Nature Machine Intelligence 2 (8), 476-486, 2020 | 276 | 2020 |
Right for the right concept: Revising neuro-symbolic concepts by interacting with their explanations W Stammer, P Schramowski, K Kersting Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 114 | 2021 |
Leveraging explanations in interactive machine learning: An overview S Teso, Ö Alkan, W Stammer, E Daly Frontiers in Artificial Intelligence 6, 1066049, 2023 | 61 | 2023 |
Right for better reasons: Training differentiable models by constraining their influence functions X Shao, A Skryagin, W Stammer, P Schramowski, K Kersting Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 9533-9540, 2021 | 36 | 2021 |
Neural-probabilistic answer set programming A Skryagin, W Stammer, D Ochs, DS Dhami, K Kersting Proceedings of the International Conference on Principles of Knowledge …, 2022 | 29* | 2022 |
A typology for exploring the mitigation of shortcut behaviour F Friedrich, W Stammer, P Schramowski, K Kersting Nature Machine Intelligence 5 (3), 319-330, 2023 | 27* | 2023 |
Interactive disentanglement: Learning concepts by interacting with their prototype representations W Stammer, M Memmel, P Schramowski, K Kersting Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 27 | 2022 |
Explanatory Interactive Machine Learning: Establishing an Action Design Research Process for Machine Learning Projects N Pfeuffer, L Baum, W Stammer, BM Abdel-Karim, P Schramowski, ... Business & Information Systems Engineering 65 (6), 677-701, 2023 | 23 | 2023 |
Boosting object representation learning via motion and object continuity Q Delfosse, W Stammer, T Rothenbächer, D Vittal, K Kersting Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023 | 15 | 2023 |
Learning to intervene on concept bottlenecks D Steinmann, W Stammer, F Friedrich, K Kersting Forty-first International Conference on Machine Learning (ICML), 2024 | 14 | 2024 |
Interpretable concept bottlenecks to align reinforcement learning agents Q Delfosse, S Sztwiertnia, W Stammer, M Rothermel, K Kersting Advances in Neural Information Processing Systems (NeurIPS) 38, 2024 | 13 | 2024 |
Revision Transformers: Instructing Language Models to Change Their Values. F Friedrich, W Stammer, P Schramowski, K Kersting ECAI, 756-763, 2023 | 9* | 2023 |
Pix2code: Learning to compose neural visual concepts as programs A Wüst, W Stammer, Q Delfosse, DS Dhami, K Kersting Uncertainty in Artificial Intelligence, 2024 | 8 | 2024 |
Learning by self-explaining W Stammer, F Friedrich, D Steinmann, M Brack, H Shindo, K Kersting Transactions on Machine Learning Research, 2024 | 7 | 2024 |
Neural Concept Binder W Stammer, A Wüst, D Steinmann, K Kersting Advances in Neural Information Processing Systems (NeurIPS) 38, 2024 | 6 | 2024 |
Where is the Truth? The Risk of Getting Confounded in a Continual World FP Busch, R Kamath, R Mitchell, W Stammer, K Kersting, M Mundt arXiv preprint arXiv:2402.06434, 2024 | 6 | 2024 |
Machine learning assisted pattern matching: Insight into oxide electronic device performance by phase determination in 4D-STEM datasets A Zintler, R Eilhardt, S Wang, M Krajnak, P Schramowski, W Stammer, ... Microscopy and Microanalysis 26 (S2), 1908-1909, 2020 | 3 | 2020 |
V-LoL: A Diagnostic Dataset for Visual Logical Learning L Helff, W Stammer, H Shindo, DS Dhami, K Kersting arXiv preprint arXiv:2306.07743, 2023 | 1 | 2023 |
Human-in-the-loop or AI-in-the-loop? Automate or Collaborate? S Natarajan, S Mathur, S Sidheekh, W Stammer, K Kersting arXiv preprint arXiv:2412.14232, 2024 | | 2024 |
NeurASP: Neural-Probabilistic Answer Set Programming A Skryagin, W Stammer, D Ochs, D Singh Dhami, K Kristian, NPA Set | | 2022 |