Seguir
Wolfgang Stammer
Título
Citado por
Citado por
Ano
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P Schramowski, W Stammer, S Teso, A Brugger, F Herbert, X Shao, ...
Nature Machine Intelligence 2 (8), 476-486, 2020
2762020
Right for the right concept: Revising neuro-symbolic concepts by interacting with their explanations
W Stammer, P Schramowski, K Kersting
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
1142021
Leveraging explanations in interactive machine learning: An overview
S Teso, Ö Alkan, W Stammer, E Daly
Frontiers in Artificial Intelligence 6, 1066049, 2023
612023
Right for better reasons: Training differentiable models by constraining their influence functions
X Shao, A Skryagin, W Stammer, P Schramowski, K Kersting
Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 9533-9540, 2021
362021
Neural-probabilistic answer set programming
A Skryagin, W Stammer, D Ochs, DS Dhami, K Kersting
Proceedings of the International Conference on Principles of Knowledge …, 2022
29*2022
A typology for exploring the mitigation of shortcut behaviour
F Friedrich, W Stammer, P Schramowski, K Kersting
Nature Machine Intelligence 5 (3), 319-330, 2023
27*2023
Interactive disentanglement: Learning concepts by interacting with their prototype representations
W Stammer, M Memmel, P Schramowski, K Kersting
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
272022
Explanatory Interactive Machine Learning: Establishing an Action Design Research Process for Machine Learning Projects
N Pfeuffer, L Baum, W Stammer, BM Abdel-Karim, P Schramowski, ...
Business & Information Systems Engineering 65 (6), 677-701, 2023
232023
Boosting object representation learning via motion and object continuity
Q Delfosse, W Stammer, T Rothenbächer, D Vittal, K Kersting
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023
152023
Learning to intervene on concept bottlenecks
D Steinmann, W Stammer, F Friedrich, K Kersting
Forty-first International Conference on Machine Learning (ICML), 2024
142024
Interpretable concept bottlenecks to align reinforcement learning agents
Q Delfosse, S Sztwiertnia, W Stammer, M Rothermel, K Kersting
Advances in Neural Information Processing Systems (NeurIPS) 38, 2024
132024
Revision Transformers: Instructing Language Models to Change Their Values.
F Friedrich, W Stammer, P Schramowski, K Kersting
ECAI, 756-763, 2023
9*2023
Pix2code: Learning to compose neural visual concepts as programs
A Wüst, W Stammer, Q Delfosse, DS Dhami, K Kersting
Uncertainty in Artificial Intelligence, 2024
82024
Learning by self-explaining
W Stammer, F Friedrich, D Steinmann, M Brack, H Shindo, K Kersting
Transactions on Machine Learning Research, 2024
72024
Neural Concept Binder
W Stammer, A Wüst, D Steinmann, K Kersting
Advances in Neural Information Processing Systems (NeurIPS) 38, 2024
62024
Where is the Truth? The Risk of Getting Confounded in a Continual World
FP Busch, R Kamath, R Mitchell, W Stammer, K Kersting, M Mundt
arXiv preprint arXiv:2402.06434, 2024
62024
Machine learning assisted pattern matching: Insight into oxide electronic device performance by phase determination in 4D-STEM datasets
A Zintler, R Eilhardt, S Wang, M Krajnak, P Schramowski, W Stammer, ...
Microscopy and Microanalysis 26 (S2), 1908-1909, 2020
32020
V-LoL: A Diagnostic Dataset for Visual Logical Learning
L Helff, W Stammer, H Shindo, DS Dhami, K Kersting
arXiv preprint arXiv:2306.07743, 2023
12023
Human-in-the-loop or AI-in-the-loop? Automate or Collaborate?
S Natarajan, S Mathur, S Sidheekh, W Stammer, K Kersting
arXiv preprint arXiv:2412.14232, 2024
2024
NeurASP: Neural-Probabilistic Answer Set Programming
A Skryagin, W Stammer, D Ochs, D Singh Dhami, K Kristian, NPA Set
2022
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20