snpReady: a tool to assist breeders in genomic analysis ISC Granato, G Galli, EG de Oliveira Couto, MB e Souza, LF Mendonça, ... Molecular Breeding 38, 1-7, 2018 | 116 | 2018 |
EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture G Costa-Neto, G Galli, HF Carvalho, J Crossa, R Fritsche-Neto G3 11 (4), jkab040, 2021 | 84 | 2021 |
Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids DH Lyra, L de Freitas Mendonça, G Galli, FC Alves, ÍSC Granato, ... Molecular breeding 37 (6), 80, 2017 | 61 | 2017 |
Bayesian analysis and prediction of hybrid performance FC Alves, ÍSC Granato, G Galli, DH Lyra, R Fritsche-Neto, ... Plant Methods 15, 1-18, 2019 | 54 | 2019 |
Association mapping for traits related to nitrogen use efficiency in tropical maize lines under field conditions JS Morosini, LF Mendonca, DH Lyra, G Galli, MS Vidotti, R Fritsche-Neto Plant and Soil 421, 453-463, 2017 | 45 | 2017 |
The effect of bienniality on genomic prediction of yield in arabica coffee H Fanelli Carvalho, G Galli, LF Ventorim Ferrão, J Vieira Almeida Nonato, ... Euphytica 216 (6), 101, 2020 | 38 | 2020 |
User’s manual for ASRgenomics v. 1.1. 0: An R package with complementary genomic functions SA Gezan, AA de Oliveira, G Galli, D Murray VSN International, 2022 | 36 | 2022 |
Increasing accuracy and reducing costs of genomic prediction by marker selection MB e Sousa, G Galli, DH Lyra, ÍSC Granato, FI Matias, FC Alves, ... Euphytica 215, 1-14, 2019 | 32 | 2019 |
On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids G Galli, FC Alves, JS Morosini, R Fritsche-Neto PloS one 15 (2), e0228724, 2020 | 30 | 2020 |
Optimizing genomic-enabled prediction in small-scale maize hybrid breeding programs: a roadmap review R Fritsche-Neto, G Galli, KLR Borges, G Costa-Neto, FC Alves, F Sabadin, ... Frontiers in Plant Science 12, 658267, 2021 | 27 | 2021 |
Improving the emulsifying property of potato protein by hydrolysis: an application as encapsulating agent with maltodextrin C Galves, G Galli, CG Miranda, LE Kurozawa Innovative Food Science & Emerging Technologies 70, 102696, 2021 | 25 | 2021 |
Introgression of maize diversity for drought tolerance: Subtropical maize landraces as source of new positive variants PAM Barbosa, R Fritsche-Neto, MC Andrade, CD Petroli, J Burgueño, ... Frontiers in Plant Science 12, 691211, 2021 | 24 | 2021 |
Modeling copy number variation in the genomic prediction of maize hybrids DH Lyra, G Galli, FC Alves, ÍSC Granato, MS Vidotti, M Bandeira e Sousa, ... Theoretical and Applied Genetics 132, 273-288, 2019 | 23 | 2019 |
Optimization of UAS‐based high‐throughput phenotyping to estimate plant health and grain yield in sorghum G Galli, DW Horne, SD Collins, J Jung, A Chang, R Fritsche‐Neto, ... The Plant Phenome Journal 3 (1), e20010, 2020 | 22 | 2020 |
Genomic prediction of autogamous and allogamous plants by SNPs and haplotypes FI Matias, G Galli, IS Correia Granato, R Fritsche‐Neto Crop Science 57 (6), 2951-2958, 2017 | 20 | 2017 |
Potato protein: Current review of structure, technological properties, and potential application on spray drying microencapsulation C Galves, G Galli, L Kurozawa Critical reviews in food science and nutrition 63 (23), 6564-6579, 2023 | 18 | 2023 |
A low‐cost greenhouse‐based high‐throughput phenotyping platform for genetic studies: A case study in maize under inoculation with plant growth‐promoting bacteria RM Yassue, G Galli, R Borsato Jr, H Cheng, G Morota, R Fritsche‐Neto The Plant Phenome Journal 5 (1), e20043, 2022 | 15 | 2022 |
Impact of the complexity of genotype by environment and dominance modeling on the predictive accuracy of maize hybrids in multi-environment prediction models FC Alves, G Galli, FI Matias, MS Vidotti, JS Morosini, R Fritsche-Neto Euphytica 217, 1-17, 2021 | 14 | 2021 |
Improving the identification of haploid maize seeds using convolutional neural networks F Sabadin, G Galli, R Borsato, R Gevartosky, GR Campos, ... Crop Science 61 (4), 2387-2397, 2021 | 13 | 2021 |
Impact of phenotypic correction method and missing phenotypic data on genomic prediction of maize hybrids G Galli, DH Lyra, FC Alves, ÍSC Granato, MB e Sousa, R Fritsche-Neto Crop Science 58 (4), 1481-1491, 2018 | 12 | 2018 |