Urmăriți
Karunesh Kumar Singh
Karunesh Kumar Singh
IET Lucknow
Adresă de e-mail confirmată pe ietlucknow.ac.in - Pagina de pornire
Titlu
Citat de
Citat de
Anul
Approximation by -Baskakov–Durrmeyer-Type Hybrid Operators
A Kajla, SA Mohiuddine, A Alotaibi, M Goyal, KK Singh
Iranian Journal of Science and Technology, Transactions A: Science 44 (4 …, 2020
252020
Approximation theorems for q-analouge of a linear positive operator by A. Lupas
KK Singh, AR Gairola
International Journal of Analysis and Applications 12 (1), 30-37, 2016
202016
On the order of approximation by modified summation-integral-type operators based on two parameters
SA Mohiuddine, KK Singh, A Alotaibi
Demonstratio Mathematica 56 (20220182), 1-14, 2023
112023
Approximation by modified Bernstein polynomials based on real parameters
RS Rajawat, KK Singh, VN Mishra
Mathematical Foundations of Computing, 2023
82023
Lp− Approximation by iterates of Bernstein-Durrmeyer type polynomials
PN Agrawal, KK Singh, AR Gairola
Int. J. Math. Anal 4 (10), 469-479, 2010
72010
Degree of Approximation by Certain Durrmeyer Type Operators
AR Gairola, KK Singh, LN Mishra
Discontinuity, Nonlinearity, and Complexity 11 (2), 253-273, 2022
52022
On Szász-Durrmeyer type modification using Gould Hopper polynomials.
KK Singh, PN Agrawal
Mathematical Foundations of Computing 6 (2), 2023
32023
Rate of approximation by -Durrmeyer operators in ,
AR Gairola, KK Singh, VN Mishra
32017
Moments of aq− Baskakov-beta operators in case 0< q< 1
AR Gairola, PN Agrawal, G Dobhal, KK Singh
J. Classical Anal 2 (1), 9-22, 2013
22013
On certain q-Baskakov-Durrmeyer operators
AR Gairola, G Dobhal, KK Singh
Le Matematiche 66 (2), 61-76, 2011
22011
Simultaneous approximation by a linear combination of Bernstein-Durrmeyer type polynomials
KK Singh, PN Agrawal
Bull. Math. Anal. Appl 3 (2), 70-82, 2011
22011
On Simultaneous Approximation and Combinations of Lupas Type Operators
TAK Sinha, KK Singh, AK Sharma
Kragujevac Journal of Mathematics 48 (4), 629–646, 2021
12021
Degree of Approximation by Iterates of Post-Widder Operators.
PN Agrawal, KK Singh
Southeast Asian Bulletin of Mathematics, 2015
12015
Inverse theorem for the iterates of modified Bernstein type polynomials.
TAK Sinha, PN Agrawal, KK Singh
Studia Universitatis Babes-Bolyai, Mathematica 59 (3), 2014
12014
Approximation properties of a certain modification of Durrmeyer operators
AR Gairola, KK Singh, H Khosravian-Arab, L Rathour, VN Mishra
Soft Computing 28 (5), 3793-3811, 2024
2024
Fuzzy approximation theorems via power series summability methods in two variables
D Singh, KK Singh
Soft Computing 28 (2), 945-953, 2024
2024
APPROXIMATION BY BÉZIER-GENERALIZED BERNSTEIN-DURRMEYER POLYNOMIALS OPERATORS
KK Singh, AR Gairola, VN Mishra, N Bisht
Palestine Journal of Mathematics 12 (1), 526-536, 2023
2023
B\'{e} zier Variant of generalized Bernstein-Durrmeyer type operators
KK Singh, AR Gairola
arXiv preprint arXiv:2005.12698, 2020
2020
Rate of approximation by new variants of Bernstein-Durrmeyer operators
AR Gairola, KK Singh
arXiv preprint arXiv:2005.03885, 2020
2020
A Kantorovich type integral modification of q-Bernstein-Schurer operators
AR Gairolaa, VN Mishra, KK Singh
Filomat 32 (4), 1335-1348, 2018
2018
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20