Urmăriți
Nicklas Werge
Titlu
Citat de
Citat de
Anul
AdaVol: An Adaptive Recursive Volatility Prediction Method
N Werge, O Wintenberger
Econometrics and Statistics 23, 19-35, 2022
112022
Non-asymptotic analysis of stochastic approximation algorithms for streaming data
A Godichon-Baggioni, N Werge, O Wintenberger
ESAIM: Probability and Statistics 27, 482-514, 2023
102023
Learning from time-dependent streaming data with online stochastic algorithms
A Godichon-Baggioni, N Werge, O Wintenberger
Transactions on Machine Learning Research, 2023
72023
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
A Godichon-Baggioni, N Werge
arXiv preprint arXiv:2311.17753, 2023
52023
Predicting risk-adjusted returns using an asset independent regime-switching model
N Werge
Expert Systems with Applications 184, 115576, 2021
52021
An adaptive volatility method for probabilistic forecasting and its application to the M6 financial forecasting competition
J de Vilmarest, N Werge
International Journal of Forecasting, 2024
12024
Exploring Pessimism and Optimism Dynamics in Deep Reinforcement Learning
B Tasdighi, N Werge, YS Wu, M Kandemir
arXiv preprint arXiv:2406.03890, 2024
2024
Deep Exploration with PAC-Bayes
B Tasdighi, M Haussmann, N Werge, YS Wu, M Kandemir
arXiv preprint arXiv:2402.03055, 2024
2024
BOF-UCB: A Bayesian-Optimistic Frequentist Algorithm for Non-Stationary Contextual Bandits
N Werge, A Akgül, M Kandemir
arXiv preprint arXiv:2307.03587, 2023
2023
Learning from time-dependent streaming data with online stochastic algorithms
N Werge
Sorbonne Université, 2022
2022
Online prediction of the volatility of high-frequency financial data
N Werge
Department of Mathematical Sciences, University of Copenhagen, 2016
2016
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–11