Contemporary symbolic regression methods and their relative performance W La Cava, B Burlacu, M Virgolin, M Kommenda, P Orzechowski, ... Advances in neural information processing systems 2021 (DB1), 1, 2021 | 311 | 2021 |
Operon C++ an efficient genetic programming framework for symbolic regression B Burlacu, G Kronberger, M Kommenda Proceedings of the 2020 genetic and evolutionary computation conference …, 2020 | 130 | 2020 |
Parameter identification for symbolic regression using nonlinear least squares M Kommenda, B Burlacu, G Kronberger, M Affenzeller Genetic Programming and Evolvable Machines 21 (3), 471-501, 2020 | 128 | 2020 |
Shape-constrained symbolic regression—improving extrapolation with prior knowledge G Kronberger, FO de França, B Burlacu, C Haider, M Kommenda Evolutionary computation 30 (1), 75-98, 2022 | 61 | 2022 |
Gaining deeper insights in symbolic regression M Affenzeller, SM Winkler, G Kronberger, M Kommenda, B Burlacu, ... Genetic programming theory and practice xi, 175-190, 2014 | 46 | 2014 |
Evolving simple symbolic regression models by multi-objective genetic programming M Kommenda, G Kronberger, M Affenzeller, SM Winkler, B Burlacu Genetic Programming Theory and Practice XIII, 1-19, 2016 | 42 | 2016 |
Symbolic regression by exhaustive search: Reducing the search space using syntactical constraints and efficient semantic structure deduplication L Kammerer, G Kronberger, B Burlacu, SM Winkler, M Kommenda, ... Genetic programming theory and practice XVII, 79-99, 2020 | 32 | 2020 |
Visualization of genetic lineages and inheritance information in genetic programming B Burlacu, M Affenzeller, M Kommenda, S Winkler, G Kronberger Proceedings of the 15th annual conference companion on Genetic and …, 2013 | 29 | 2013 |
Shape-constrained multi-objective genetic programming for symbolic regression C Haider, FO de Franca, B Burlacu, G Kronberger Applied Soft Computing 132, 109855, 2023 | 22 | 2023 |
White box vs. black box modeling: On the performance of deep learning, random forests, and symbolic regression in solving regression problems M Affenzeller, B Burlacu, V Dorfer, S Dorl, G Halmerbauer, ... Computer Aided Systems Theory–EUROCAST 2019: 17th International Conference …, 2020 | 22 | 2020 |
Interpretable symbolic regression for data science: Analysis of the 2022 competition FO de França, M Virgolin, M Kommenda, MS Majumder, M Cranmer, ... arXiv preprint arXiv:2304.01117, 2023 | 14 | 2023 |
Contemporary symbolic regression methods and their relative performance, 2021 W La Cava, P Orzechowski, B Burlacu, FO de França, M Virgolin, Y Jin, ... URL https://arxiv. org/abs/2107.14351, 2021 | 14 | 2021 |
Dynamic observation of genotypic and phenotypic diversity for different symbolic regression gp variants M Affenzeller, SM Winkler, B Burlacu, G Kronberger, M Kommenda, ... Proceedings of the genetic and evolutionary computation conference companion …, 2017 | 14 | 2017 |
Genetic programming with data migration for symbolic regression M Kommenda, M Affenzeller, B Burlacu, G Kronberger, SM Winkler Proceedings of the companion publication of the 2014 annual conference on …, 2014 | 14 | 2014 |
Gecco'2022 symbolic regression competition: Post-analysis of the operon framework B Burlacu Proceedings of the Companion Conference on Genetic and Evolutionary …, 2023 | 12 | 2023 |
Sliding window symbolic regression for detecting changes of system dynamics SM Winkler, M Affenzeller, G Kronberger, M Kommenda, B Burlacu, ... Genetic Programming Theory and Practice XII, 91-107, 2015 | 12 | 2015 |
Using shape constraints for improving symbolic regression models C Haider, FO de França, B Burlacu, G Kronberger arXiv preprint arXiv:2107.09458, 2021 | 11 | 2021 |
Genetic Programming Theory and Practice XVII L Kammerer, G Kronberger, B Burlacu, SM Winkler, M Kommenda, ... Berlin: Springer, 2020 | 11 | 2020 |
Parsimony measures in multi-objective genetic programming for symbolic regression B Burlacu, G Kronberger, M Kommenda, M Affenzeller Proceedings of the genetic and evolutionary computation conference companion …, 2019 | 11 | 2019 |
Symbolic Regression G Kronberger, B Burlacu, M Kommenda, SM Winkler, M Affenzeller CRC Press, 2024 | 10 | 2024 |