Prospects for new antibiotics: a molecule-centered perspective CT Walsh, TA Wencewicz The Journal of antibiotics 67 (1), 7-22, 2014 | 539 | 2014 |
Flavoenzymes: versatile catalysts in biosynthetic pathways CT Walsh, TA Wencewicz Natural product reports 30 (1), 175-200, 2013 | 367 | 2013 |
Antibiotics: challenges, mechanisms, opportunities C Walsh, T Wencewicz John Wiley & Sons, 2020 | 214 | 2020 |
The tetracycline destructases: a novel family of tetracycline-inactivating enzymes KJ Forsberg, S Patel, TA Wencewicz, G Dantas Chemistry & biology 22 (7), 888-897, 2015 | 194 | 2015 |
Tetracycline-inactivating enzymes JL Markley, TA Wencewicz Frontiers in microbiology 9, 1058, 2018 | 187 | 2018 |
Crossroads of antibiotic resistance and biosynthesis TA Wencewicz Journal of molecular biology 431 (18), 3370-3399, 2019 | 178 | 2019 |
Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse … TA Wencewicz, U Möllmann, TE Long, MJ Miller Biometals 22, 633-648, 2009 | 166 | 2009 |
Trihydroxamate siderophore–fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus TA Wencewicz, TE Long, U Möllmann, MJ Miller Bioconjugate chemistry 24 (3), 473-486, 2013 | 154 | 2013 |
Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance AJ Gasparrini, JL Markley, H Kumar, B Wang, L Fang, S Irum, CT Symister, ... Communications biology 3 (1), 241, 2020 | 153 | 2020 |
Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii TA Wencewicz, MJ Miller Journal of medicinal chemistry 56 (10), 4044-4052, 2013 | 136 | 2013 |
Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes J Park, AJ Gasparrini, MR Reck, CT Symister, JL Elliott, JP Vogel, ... Nature chemical biology 13 (7), 730-736, 2017 | 125 | 2017 |
β-Lactone formation during product release from a nonribosomal peptide synthetase JE Schaffer, MR Reck, NK Prasad, TA Wencewicz Nature Chemical Biology 13 (7), 737-744, 2017 | 109 | 2017 |
Sideromycins as pathogen-targeted antibiotics TA Wencewicz, MJ Miller Antibacterials: Volume II, 151-183, 2018 | 81 | 2018 |
New antibiotics from Nature’s chemical inventory TA Wencewicz Bioorganic & medicinal chemistry 24 (24), 6227-6252, 2016 | 80 | 2016 |
The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase DF Kreitler, EM Gemmell, JE Schaffer, TA Wencewicz, AM Gulick Nature communications 10 (1), 3432, 2019 | 69 | 2019 |
Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping JA Shapiro, TA Wencewicz ACS infectious diseases 2 (2), 157-168, 2016 | 67 | 2016 |
Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase JA Mayfield, RE Frederick, BR Streit, TA Wencewicz, DP Ballou, ... Journal of Biological Chemistry 285 (40), 30375-30388, 2010 | 61 | 2010 |
Ceric ammonium nitrate catalyzed oxidation of sulfides to sulfoxides MH Ali, D Kriedelbaugh, T Wencewicz Synthesis 2007 (22), 3507-3511, 2007 | 55 | 2007 |
N–O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels–Alder and Ene … TA Wencewicz, B Yang, JR Rudloff, AG Oliver, MJ Miller Journal of medicinal chemistry 54 (19), 6843-6858, 2011 | 54 | 2011 |
Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii TJ Bohac, L Fang, DE Giblin, TA Wencewicz ACS chemical biology 14 (4), 674-687, 2019 | 53 | 2019 |