SLC19A1 is an importer of the immunotransmitter cGAMP C Ritchie, AF Cordova, GT Hess, MC Bassik, L Li Molecular cell 75 (2), 372-381. e5, 2019 | 318 | 2019 |
LRRC8A: C/E heteromeric channels are ubiquitous transporters of cGAMP LJ Lahey, RE Mardjuki, X Wen, GT Hess, C Ritchie, JA Carozza, ... Molecular cell 80 (4), 578-591. e5, 2020 | 156 | 2020 |
Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes AF Cordova, C Ritchie, V Bohnert, L Li ACS central science 7 (6), 1073-1088, 2021 | 116 | 2021 |
Biochemistry, cell biology, and pathophysiology of the innate immune cGAS–cGAMP–STING pathway C Ritchie, JA Carozza, L Li Annual Review of Biochemistry 91 (1), 599-628, 2022 | 75 | 2022 |
Analysis of HIV-1 Gag protein interactions via biotin ligase tagging C Ritchie, I Cylinder, EJ Platt, E Barklis Journal of virology 89 (7), 3988-4001, 2015 | 59 | 2015 |
Trimer enhancement mutation effects on HIV-1 matrix protein binding activities A Alfadhli, A Mack, C Ritchie, I Cylinder, L Harper, PR Tedbury, EO Freed, ... Journal of virology 90 (12), 5657-5664, 2016 | 33 | 2016 |
Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties A Alfadhli, A Mack, L Harper, S Berk, C Ritchie, E Barklis Bioorganic & medicinal chemistry 24 (21), 5618-5625, 2016 | 21 | 2016 |
Analysis of K-Ras interactions by biotin ligase tagging C Ritchie, A Mack, L Harper, A Alfadhli, PJS Stork, X Nan, E Barklis Cancer genomics & proteomics 14 (4), 225-239, 2017 | 14 | 2017 |
cGAMP as an adjuvant in antiviral vaccines and cancer immunotherapy C Ritchie, L Li Biochemistry 59 (18), 1713-1715, 2020 | 13 | 2020 |
Bö hnert, V., and Li, L.(2021). Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7, 1073–1088 AF Cordova, C Ritchie | 10 | |
In response to Luteijn et al.: Concerns regarding cGAMP uptake assay and evidence that SLC19A1 is not the major cGAMP importer in human PBMCs C Ritchie, AF Cordova, L Li BioRxiv, 798397, 2019 | 6 | 2019 |
IFN-independent STING signaling: friend or foe? V Böhnert, C Ritchie, L Li Immunity 53 (1), 8-10, 2020 | 5 | 2020 |
STING activation of IRF3 is tuned by PELI2 to suppress basal activation and reinforce the anti-viral response C Ritchie, L Li bioRxiv, 2023.04. 15.537029, 2023 | 3 | 2023 |
Human STING oligomer function is governed by palmitoylation of an evolutionarily conserved cysteine R Chan, X Cao, SL Ergun, E Njomen, SR Lynch, C Ritchie, B Cravatt, L Li bioRxiv, 2023.08. 11.553045, 2023 | 2 | 2023 |
PELI2 is a negative regulator of STING signaling that is dynamically repressed during viral infection C Ritchie, L Li Molecular Cell 84 (13), 2423-2435. e5, 2024 | 1 | 2024 |
Cysteine allostery and autoinhibition govern human STING oligomer functionality L Li, R Chan, X Cao, S Ergun, E Njomen, S Lynch, C Ritchie, B Cravatt | | 2024 |