A Bayesian model of diachronic meaning change L Frermann, M Lapata Transactions of the Association for Computational Linguistics 4, 31-45, 2016 | 191 | 2016 |
Inducing document structure for aspect-based summarization L Frermann, A Klementiev Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019 | 72 | 2019 |
A hierarchical bayesian model for unsupervised induction of script knowledge L Frermann, I Titov, M Pinkal Proceedings of the 14th Conference of the European Chapter of the …, 2014 | 61 | 2014 |
Evaluating debiasing techniques for intersectional biases S Subramanian, X Han, T Baldwin, T Cohn, L Frermann arXiv preprint arXiv:2109.10441, 2021 | 54 | 2021 |
Screenplay summarization using latent narrative structure P Papalampidi, F Keller, L Frermann, M Lapata arXiv preprint arXiv:2004.12727, 2020 | 53 | 2020 |
Whodunnit? crime drama as a case for natural language understanding L Frermann, SB Cohen, M Lapata Transactions of the Association for Computational Linguistics 6, 1-15, 2018 | 37 | 2018 |
Fairness-aware class imbalanced learning S Subramanian, A Rahimi, T Baldwin, T Cohn, L Frermann arXiv preprint arXiv:2109.10444, 2021 | 34 | 2021 |
Contrastive learning for fair representations A Shen, X Han, T Cohn, T Baldwin, L Frermann arXiv preprint arXiv:2109.10645, 2021 | 29 | 2021 |
Optimising equal opportunity fairness in model training A Shen, X Han, T Cohn, T Baldwin, L Frermann arXiv preprint arXiv:2205.02393, 2022 | 24 | 2022 |
Incremental bayesian category learning from natural language L Frermann, M Lapata Cognitive science 40 (6), 1333-1381, 2016 | 22 | 2016 |
Does representational fairness imply empirical fairness? A Shen, X Han, T Cohn, T Baldwin, L Frermann Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022 …, 2022 | 20 | 2022 |
Unsupervised induction of linguistic categories with records of reading, speaking, and writing M Barrett, AV González-Garduño, L Frermann, A Søgaard Proceedings of the 2018 Conference of the North American Chapter of the …, 2018 | 20 | 2018 |
PPT: Parsimonious parser transfer for unsupervised cross-lingual adaptation K Kurniawan, L Frermann, P Schulz, T Cohn arXiv preprint arXiv:2101.11216, 2021 | 17 | 2021 |
Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels L Frermann, G Szarvas In Proceedings of the Conference on Empirical Methods on Natural Language …, 2017 | 14 | 2017 |
Conflicts, Villains, Resolutions: Towards models of Narrative Media Framing L Frermann, J Li, S Khanehzar, G Mikolajczak The 61st Annual Meeting of the Association for Computational Linguistics 1 …, 2023 | 13 | 2023 |
Fairlib: A unified framework for assessing and improving fairness X Han, A Shen, Y Li, L Frermann, T Baldwin, T Cohn Proceedings of the 2022 Conference on Empirical Methods in Natural Language …, 2022 | 12 | 2022 |
Systematic evaluation of predictive fairness X Han, A Shen, T Cohn, T Baldwin, L Frermann arXiv preprint arXiv:2210.08758, 2022 | 11 | 2022 |
fairlib: A unified framework for assessing and improving classification fairness X Han, A Shen, Y Li, L Frermann, T Baldwin, T Cohn arXiv preprint arXiv:2205.01876, 2022 | 11 | 2022 |
Framing unpacked: A semi-supervised interpretable multi-view model of media frames S Khanehzar, T Cohn, G Mikolajczak, A Turpin, L Frermann arXiv preprint arXiv:2104.11030, 2021 | 11 | 2021 |
A computational acquisition model for multimodal word categorization U Berger, G Stanovsky, O Abend, L Frermann arXiv preprint arXiv:2205.05974, 2022 | 10 | 2022 |