Urmăriți
Vijaya Krishna Yalavarthi
Vijaya Krishna Yalavarthi
Adresă de e-mail confirmată pe uni-hildesheim.de
Titlu
Citat de
Citat de
Anul
Steering top-k influencers in dynamic graphs via local updates
VK Yalavarthi, A Khan
2018 IEEE International Conference on Big Data (Big Data), 576-583, 2018
17*2018
Select Your Questions Wisely: For Entity Resolution With Crowd Errors
VK Yalavarthi, X Ke, A Khan
ACM on Conference on Information and Knowledge Management, 317-326, 2017
16*2017
GraFITi: Graphs for Forecasting Irregularly Sampled Time Series
VK Yalavarthi, K Madhusudhanan, R Scholz, N Ahmed, J Burchert, ...
Proceedings of the AAAI Conference on Artificial Intelligence 38 (15), 16255 …, 2024
102024
Tripletformer for Probabilistic Interpolation of Irregularly sampled Time Series
VK Yalavarthi, J Burchert, L Schmidt-Thieme
2023 IEEE International Conference on Big Data (BigData), 986-995, 2023
6*2023
Open set recognition for time series classification
T Akar, T Werner, VK Yalavarthi, L Schmidt-Thieme
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 354-366, 2022
62022
DCSF: Deep Convolutional Set Functions for Classification of Asynchronous Time Series
VK Yalavarthi, J Burchert, L Schmidt-Thieme
2022 IEEE 9th International Conference on Data Science and Advanced …, 2022
62022
A demonstration of PERC: probabilistic entity resolution with crowd errors
X Ke, M Teo, A Khan, VK Yalavarthi
Proceedings of the VLDB Endowment 11 (12), 1922-1925, 2018
62018
A novel incremental class learning technique for multi-class classification
MJ Er, VK Yalavarthi, N Wang, R Venkatesan
Advances in Neural Networks–ISNN 2016: 13th International Symposium on …, 2016
42016
Are eeg sequences time series? eeg classification with time series models and joint subject training
J Burchert, T Werner, VK Yalavarthi, DC de Portugal, M Stubbemann, ...
arXiv preprint arXiv:2404.06966, 2024
32024
Gait verification using deep learning with a pairwise loss
VK Yalavarthi, J Grabocka, H Mandalapu, L Schmidt-Thieme
2019 International Conference of the Biometrics Special Interest Group …, 2019
22019
Physiome-ODE: A Benchmark for Irregularly Sampled Multivariate Time Series Forecasting Based on Biological ODEs
C Klötergens, VK Yalavarthi, R Scholz, M Stubbemann, S Born, ...
arXiv preprint arXiv:2502.07489, 2025
2025
Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting
C Klötergens, VK Yalavarthi, M Stubbemann, L Schmidt-Thieme
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2024
2024
Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting
V Krishna Yalavarthi, R Scholz, K Madhusudhanan, S Born, ...
arXiv e-prints, arXiv: 2406.07246, 2024
2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
VK Yalavarthi, R Scholz, S Born, L Schmidt-Thieme
arXiv preprint arXiv:2402.06293, 2024
2024
Forecasting Early with Meta Learning
S Jawed, K Madhusudhanan, VK Yalavarthi, L Schmidt-Thieme
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
2023
Open Set Recognition in Semantic Segmentation
R Raghuraman, L Schmidt-Thieme, VK Yalavarthi, S Raafatnia
2020
A hybrid machine learning technique for complex non-stationary classification problems
VK Yalavarthi
2018
Robust EEG Classification via Graph Neural Networks
N Ahmed, J Burchert, VK Yalavarthi, M Stubbemann, L Schmidt-Thieme
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–18