Urmăriți
Steven Peters
Steven Peters
Adresă de e-mail confirmată pe tu-darmstadt.de - Pagina de pornire
Titlu
Citat de
Citat de
Anul
Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology
S Studer, TB Bui, C Drescher, A Hanuschkin, L Winkler, S Peters, ...
Machine Learning & Knowledge Extraction, 392-413, 2021
3092021
Measuring global production effectiveness
G Lanza, J Stoll, N Stricker, S Peters, C Lorenz
Procedia CIRP 7, 31-36, 2013
702013
Digitalization of automotive industry–scenarios for future manufacturing
S Peters, JH Chun, G Lanza
Manufacturing Review, 2016
572016
Machine learning-based analysis of in-cylinder flow fields to predict combustion engine performance
A Hanuschkin, S Schober, J Bode, J Schorr, B Böhm, C Krüger, S Peters
International Journal of Engine Research, 2019
432019
A readiness level model for new manufacturing technologies
S Peters
Production Engineering 9 (5-6), 647-654, 2015
402015
Integrated capacity planning over highly volatile horizons
G Lanza, S Peters
CIRP annals 61 (1), 395-398, 2012
392012
Adjusting the factory planning process when using immature technologies
R Kopf, L Schlesinger, S Peters, G Lanza
Procedia CIRP 41, 1011-1016, 2016
362016
Automotive manufacturing technologies–an international viewpoint
S Peters, G Lanza, N Jun, J Xiaoning, Y Pei-Yun, M Colledani
Manufacturing Review 1 (10), 1-12, 2014
322014
Investigation of cycle-to-cycle variations in a spark-ignition engine based on a machine learning analysis of the early flame kernel
A Hanuschkin, S Zündorf, M Schmidt, C Welch, J Schorr, S Peters, ...
Proceedings of the Combustion Institute 38 (4), 5751-5759, 2021
292021
Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
A Kuznietsov, B Gyevnar, C Wang, S Peters, SV Albrecht
arXiv preprint arXiv:2402.10086, 2024
242024
Ad-hoc rescheduling and innovative business models for shock-robust production systems
G Lanza, N Stricker, S Peters
Procedia CIRP 7, 121-126, 2013
242013
Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine
D Dreher, M Schmidt, C Welch, S Ourza, S Zündorf, J Maucher, S Peters, ...
International Journal of Engine Research, 2020
232020
Dynamic optimization of manufacturing systems in automotive industries
G Lanza, S Peters, HG Herrmann
CIRP Journal of Manufacturing Science and Technology 5 (4), 235-240, 2012
212012
Assessment of flexible quantities and product variants in production
G Lanza, K Peter, J Rühl, S Peters
CIRP Journal of Manufacturing Science and Technology 3 (4), 279-284, 2010
132010
AUTOtech. agil: Architecture and Technologies for Orchestrating Automotive Agility
R van Kempen, B Lampe, M Leuffen, L Wirtz, F Thomsen, G Bilkei-Gorzo, ...
Universitätsbibliothek der RWTH Aachen, 2023
112023
Customer-driven planning and control of global production networks-balancing standardisation and regionalisation
T Arndt, J Hochdoerffer, E Moser, S Peters, G Lanza
Proceedings of the 18th Cambridge International Manufacturing Symposium 11 …, 2014
102014
Bewertung von Stückzahl-und Variantenflexibilität in der Produktion
G Lanza, J Rühl, S Peters
ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 104 (11), 1039-1044, 2009
102009
Markoffsche Entscheidungsprozesse zur Kapazitäts-und Investitionsplanung von Produktionssystemen
S Peters
Shaker, 2013
92013
The Inadequacy of Discrete Scenarios in Assessing Deep Neural Networks
TK Mori, X Liang, L Elster, S Peters
IEEE Access 10, 118236-118242, 2022
82022
Optimal investment policies in premature manufacturing technologies
S Peters
International Journal of Production Research 53 (13), 3963-3974, 2015
82015
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20