Benchmarking of alignment-free sequence comparison methods A Zielezinski, HZ Girgis, G Bernard, CA Leimeister, K Tang, T Dencker, ... Genome biology 20, 1-18, 2019 | 227 | 2019 |
A network-based integrated framework for predicting virus–prokaryote interactions W Wang, J Ren, K Tang, E Dart, JC Ignacio-Espinoza, JA Fuhrman, ... NAR genomics and bioinformatics 2 (2), lqaa044, 2020 | 116 | 2020 |
Alignment-free sequence analysis and applications J Ren, X Bai, YY Lu, K Tang, Y Wang, G Reinert, F Sun Annual Review of Biomedical Data Science 1 (1), 93-114, 2018 | 110 | 2018 |
CAFE: aCcelerated Alignment-FrEe sequence analysis YY Lu, K Tang, J Ren, JA Fuhrman, MS Waterman, F Sun Nucleic acids research 45 (W1), W554-W559, 2017 | 77 | 2017 |
Afann: bias adjustment for alignment-free sequence comparison based on sequencing data using neural network regression K Tang, J Ren, F Sun Genome biology 20, 1-17, 2019 | 26 | 2019 |
Background adjusted alignment-free dissimilarity measures improve the detection of horizontal gene transfer K Tang, YY Lu, F Sun Frontiers in Microbiology 9, 711, 2018 | 11 | 2018 |
Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA K Tang, J Ren, R Cronn, DL Erickson, BG Milligan, M Parker-Forney, ... BMC genomics 19, 1-16, 2018 | 7 | 2018 |
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic X Bai, K Tang, J Ren, M Waterman, F Sun BMC genomics 18, 19-30, 2017 | 7 | 2017 |