Probabilistic Margins for Instance Reweighting in Adversarial Training Q Wang, F Liu, B Han, T Liu, C Gong, G Niu, M Zhou, M Sugiyama NeurIPS, 2021 | 68* | 2021 |
Out-of-distribution Detection with Implicit Outlier Transformation Q Wang, J Ye, F Liu, Q Dai, M Kalander, T Liu, J Hao, B Han ICLR, 2023 | 51 | 2023 |
Instance-dependent positive and unlabeled learning with labeling bias estimation C Gong, Q Wang, T Liu, B Han, J You, J Yang, D Tao IEEE transactions on pattern analysis and machine intelligence 44 (8), 4163-4177, 2021 | 47 | 2021 |
Tackling instance-dependent label noise via a universal probabilistic model Q Wang, B Han, T Liu, G Niu, J Yang, C Gong AAAI, 2021 | 42 | 2021 |
Watermarking for Out-of-distribution Detection Q Wang, F Liu, Y Zhang, J Zhang, C Gong, T Liu, B Han NeurIPS, 2022 | 37 | 2022 |
Learning to augment distributions for out-of-distribution detection Q Wang, Z Fang, Y Zhang, F Liu, Y Li, B Han NeurIPS, 2023 | 36 | 2023 |
Out-of-distribution detection learning with unreliable out-of-distribution sources H Zheng, Q Wang, Z Fang, X Xia, F Liu, T Liu, B Han NeurIPS, 2023 | 21 | 2023 |
Towards Lightweight Black-Box Attacks against Deep Neural Networks C Sun, Y Zhang, W Chaoqun, Q Wang, Y Li, T Liu, B Han, X Tian NeurIPS, 2022 | 21 | 2022 |
Fraud detection under multi-sourced extremely noisy annotations C Zhang, Q Wang, T Liu, X Lu, J Hong, B Han, C Gong CIKM, 2021 | 14 | 2021 |
Learning with group noise Q Wang, J Yao, C Gong, T Liu, M Gong, H Yang, B Han AAAI, 2021 | 11 | 2021 |
A Sober Look at the Robustness of CLIPs to Spurious Features Q Wang, Y Lin, Y Chen, L Schmidt, B Han, T Zhang NeurIPS, 2024 | 10* | 2024 |
Towards Effective Evaluations and Comparison for LLM Unlearning Methods Q Wang, B Han, P Yang, J Zhu, T Liu, M Sugiyama ICLR, 2025 | 7* | 2025 |
W-DOE: Wasserstein Distribution-agnostic Outlier Exposure Q Wang, B Han, Y Liu, C Gong, T Liu, J Liu IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025 | 1 | 2025 |
Rethinking LLM Unlearning Objectives: A Gradient Perspective and Go Beyond Q Wang, JP Zhou, Z Zhou, S Shin, B Han, KQ Weinberger ICLR, 2025 | | 2025 |