Urmăriți
Eldar Kurtic
Eldar Kurtic
Red Hat AI and IST Austria
Adresă de e-mail confirmată pe ist.ac.at
Titlu
Citat de
Citat de
Anul
The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models
E Kurtic, D Campos, T Nguyen, E Frantar, M Kurtz, B Fineran, M Goin, ...
EMNLP 2022, 2022
1352022
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
E Frantar, E Kurtic, D Alistarh
NeurIPS 2021, 2021
632021
ZipLM: Inference-Aware Structured Pruning of Language Models
E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 2024
342024
ZipLM: Hardware-Aware Structured Pruning of Language Models
E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2302.04089, 2023
252023
Sparse Finetuning for Inference Acceleration of Large Language Models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
172023
GMP*: Well-Tuned Gradual Magnitude Pruning Can Outperform Most BERT-Pruning Methods
E Kurtic, D Alistarh
arXiv preprint arXiv:2210.06384, 2022
162022
CAP: Correlation-Aware Pruning for Highly-Accurate Sparse Vision Models
D Kuznedelev, E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 2024
132024
CrAM: A Compression-Aware Minimizer
A Peste, A Vladu, E Kurtic, CH Lampert, D Alistarh
ICLR 2023, 2022
102022
Accurate Neural Network Pruning Requires Rethinking Sparse Optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
82023
SparseProp: efficient sparse backpropagation for faster training of neural networks at the edge
M Nikdan, T Pegolotti, E Iofinova, E Kurtic, D Alistarh
International Conference on Machine Learning, 26215-26227, 2023
82023
Microadam: Accurate adaptive optimization with low space overhead and provable convergence, 2024
IV Modoranu, M Safaryan, G Malinovsky, E Kurtic, T Robert, P Richtarik, ...
URL https://arxiv. org/abs/2405.15593, 0
7
Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models
E Kurtic, A Moeini, D Alistarh
EMNLP 2024, 2024
62024
Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment
A Agarwalla, A Gupta, A Marques, S Pandit, M Goin, E Kurtic, K Leong, ...
arXiv preprint arXiv:2405.03594, 2024
62024
Error Feedback Can Accurately Compress Preconditioners
IV Modoranu, A Kalinov, E Kurtic, D Alistarh
arXiv preprint arXiv:2306.06098, 2023
52023
SparseProp: Efficient Sparse Backpropagation for Faster Training of Neural Networks
M Nikdan, T Pegolotti, E Iofinova, E Kurtic, D Alistarh
ICML 2023, 2023
42023
oViT: An Accurate Second-Order Pruning Framework for Vision Transformers
D Kuznedelev, E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2210.09223, 2022
32022
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence
IV Modoranu, M Safaryan, G Malinovsky, E Kurtic, T Robert, P Richtarik, ...
arXiv preprint arXiv:2405.15593, 2024
22024
How to Prune Your Language Model: Recovering Accuracy on the “Sparsity May Cry” Benchmark
E Kurtic, T Hoefler, D Alistarh
Conference on Parsimony and Learning, 542-553, 2024
22024
" Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization
E Kurtic, A Marques, S Pandit, M Kurtz, D Alistarh
arXiv preprint arXiv:2411.02355, 2024
12024
EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search
O Sieberling, D Kuznedelev, E Kurtic, D Alistarh
arXiv preprint arXiv:2410.14649, 2024
12024
Sistemul nu poate realiza operația în acest moment. Încercați din nou mai târziu.
Articole 1–20