Automated quality control of vacuum insulated glazing by convolutional neural network image classification H Riedel, S Mokdad, I Schulz, C Kocer, PL Rosendahl, J Schneider, ... Automation in Construction 135, 104144, 2022 | 14 | 2022 |
Virtual axle detector based on analysis of bridge acceleration measurements by fully convolutional network SR Lorenzen, H Riedel, MM Rupp, L Schmeiser, H Berthold, A Firus, ... Sensors 22 (22), 8963, 2022 | 9 | 2022 |
SoundLab AI-Machine learning for sound insulation value predictions of various glass assemblies M Drass, MA Kraus, H Riedel, I Stelzer Glass Structures & Engineering 7 (1), 101-118, 2022 | 9 | 2022 |
High‐speed drive‐by monitoring: field testing with an intercity express train (ICE) MM Rupp, SR Lorenzen, MA Fritzsche, H Riedel, A Kohl, E Apostolidi, ... ce/papers 6 (5), 854-862, 2023 | 5 | 2023 |
Temp-AI-Estimator: Interior temperature prediction using domain-informed Deep Learning R Bischof, M Sprenger, H Riedel, M Bumann, W Walczok, M Drass, ... Energy and Buildings 297, 113425, 2023 | 3 | 2023 |
Object-size-driven design of convolutional neural networks: Virtual axle detection based on raw data H Riedel, SR Lorenzen, C Hübler Engineering Applications of Artificial Intelligence 141, 109803, 2025 | 1 | 2025 |
Crack segmentation for high-speed imaging: detection of fractures in thermally toughened glass H Riedel, L Bohmann, F Bagusat, M Sauer, M Schuster, M Seel Glass Structures & Engineering 9 (2), 117-130, 2024 | 1 | 2024 |
Long‐term validation of virtual sensing of a railway bridge with ballasted superstructure SR Lorenzen, H Berthold, MJA Fritzsche, MM Rupp, H Riedel, ... ce/papers 6 (5), 725-733, 2023 | 1 | 2023 |
QUICK‐B‐WIM: Large scale application of a moving force identification method on a railway bridge H Riedel, A Firus, M Vospernig, E Apostolidi, J Schneider ce/papers 6 (5), 863-869, 2023 | 1 | 2023 |
Strength Lab AI: a mixture-of-experts deep learning approach for limit state analysis and design of monolithic and laminate structures made of glass MA Kraus, R Bischof, H Riedel, L Schmeiser, A Pauli, I Stelzer, M Drass Glass Structures & Engineering 9 (3), 607-655, 2024 | | 2024 |
SOUNDLAB AI Tool-Machine learning for sound insulation value predictions M WhatsAppLINKEDINFACEBOOKXPRINT, IMA Kraus, H Riedel, ... | | 2024 |
Narzędzie SOUNDLAB AI-uczenie maszynowe do przewidywania wartości izolacyjności akustycznej MA Kraus, M Drass, H Riedel, R Bischof, L Schmeiser, I Stelzer Świat Szkła 29, 2024 | | 2024 |
Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations H Riedel, SR Lorenzen, MM Rupp, MA Fritzsche, J Schneider ce/papers 6 (5), 718-724, 2023 | | 2023 |
SOUNDLAB AI Tool–Machine Learning zur Bestimmung des bewerteten Schalldämmmaßes M Drass, MA Kraus, H Riedel, I Stelzer ce/papers 5 (1), 147-156, 2022 | | 2022 |
Convolutional Neural Networks in Civil Engineering: A Contribution towards Systematic Model Design addressing Limited Data, Costly Labeling, and Explainability H Riedel Technische Universität Darmstadt, 0 | | |
Quality control for Vacuum Insulating Glass using Explainable Artificial Intelligence H Riedel, S Mokdad, I Schulz, C Kocer, P Rosendahl, J Schneider, ... | | |
SOUNDLAB AI Tool-Machine learning for sound insulation value predictions IMA Kraus, MMNI UG, H Riedel, R Bischof, L Schmeiser, I Stelzer | | |