Подписаться
Miao Tian
Miao Tian
Department of Mathematical Science, Norwegian University of Science and Technology
Подтвержден адрес электронной почты в домене ntnu.no
Название
Процитировано
Процитировано
Год
Inversion of well logs into lithology classes accounting for spatial dependencies by using hidden markov models and recurrent neural networks
M Tian, H Omre, H Xu
Journal of Petroleum Science and Engineering 196, 107598, 2021
552021
Extraction of temporal information from social media messages using the BERT model
K Ma, Y Tan, M Tian, X Xie, Q Qiu, S Li, X Wang
Earth Science Informatics 15 (1), 573-584, 2022
352022
What is this article about? Generative summarization with the BERT model in the geosciences domain
K Ma, M Tian, Y Tan, X Xie, Q Qiu
Earth Science Informatics, 1-16, 2022
342022
Deep learning assisted well log inversion for fracture identification
M Tian, B Li, H Xu, D Yan, Y Gao, X Lang
Geophysical Prospecting 69 (2), 419-433, 2021
282021
A question answering system based on mineral exploration ontology generation: A deep learning methodology
Q Qiu, M Tian, K Ma, YJ Tan, L Tao, Z Xie
Ore Geology Reviews 153, 105294, 2023
182023
Artificial neural network assisted prediction of dissolution spatial distribution in the volcanic weathered crust: A case study from Chepaizi Bulge of Junggar Basin …
M Tian, H Xu, J Cai, J Wang, Z Wang
Marine and Petroleum Geology 110, 928-940, 2019
172019
Ontology-based BERT model for automated information extraction from geological hazard reports
K Ma, M Tian, Y Tan, Q Qiu, Z Xie, R Huang
Journal of Earth Science 34 (5), 1390-1405, 2023
152023
Chinese engineering geological named entity recognition by fusing multi-features and data enhancement using deep learning
Q Qiu, M Tian, Z Huang, Z Xie, K Ma, L Tao, D Xu
Expert Systems with Applications 238, 121925, 2024
142024
Sedimentary architecture of hyperpycnal flow deposits: Cretaceous Sangyuan outcrop, from the Luanping Basin, North East China
D Yan, H Xu, Z Xu, Z Lei, M Tian, L Cheng, Y Ma, Z Wang, M Ostadhassan
Marine and Petroleum Geology 121, 104593, 2020
122020
Geological symbol recognition on geological map using convolutional recurrent neural network with augmented data
Q Qiu, Y Tan, K Ma, M Tian, Z Xie, L Tao
Ore Geology Reviews 153, 105262, 2023
112023
Semantic information extraction and search of mineral exploration data using text mining and deep learning methods
Q Qiu, M Tian, L Tao, Z Xie, K Ma
Ore Geology Reviews 165, 105863, 2024
102024
A new workflow for multi-well lithofacies interpretation integrating joint petrophysical inversion, unsupervised, and supervised machine learning
S Verma, S Bhattacharya, NUMK Chowdhury, M Tian
SEG International Exposition and Annual Meeting, D011S093R002, 2021
102021
Recurrent neural network: application in facies classification
M Tian, S Verma
Advances in subsurface data analytics, 65-94, 2022
72022
Impact of petrographic characteristics on reservoir quality of tight sandstone reservoirs in coal‐bearing strata: A case study in Lower Permian Shihezi Formation in northern …
Z Liu, S Wu, J Li, Z Xu, M Tian, T Zhang, Y An
Geological Journal 56 (6), 3097-3117, 2021
72021
火成岩蚀变层段的有效储层识别及孔隙度定量表征--以滨南油田沙四段上亚段火成岩为例
王敏, 王永诗, 田淼, 傅爱兵, 朱家俊, 张顺, 余光华
Petroleum Geology & Recovery Efficiency 25 (4), 2018
72018
Recognition of geological legends on a geological profile via an improved deep learning method with augmented data using transfer learning strategies
M Tian, K Ma, Z Liu, Q Qiu, Y Tan, Z Xie
Ore Geology Reviews 153, 105270, 2023
62023
CnGeoPLM: Contextual knowledge selection and embedding with pretrained language representation model for the geoscience domain
K Ma, S Zheng, M Tian, Q Qiu, Y Tan, X Hu, HY Li, Z Xie
Earth Science Informatics 16 (4), 3629-3646, 2023
52023
A deep learning-based method for deep information extraction from multimodal data for geological reports to support geological knowledge graph construction
Y Chen, M Tian, Q Wu, L Tao, T Jiang, Q Qiu, H Huang
Earth Science Informatics 17 (3), 1867-1887, 2024
42024
Joint extraction of entity relations from geological reports based on a novel relation graph convolutional network
M Tian, K Ma, Q Wu, Q Qiu, L Tao, Z Xie
Computers & Geosciences 187, 105571, 2024
42024
Multi-granularity retrieval of mineral resource geological reports based on multi-feature association
K Ma, J Deng, M Tian, L Tao, J Liu, Z Xie, H Huang, Q Qiu
Ore Geology Reviews 165, 105889, 2024
42024
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20