Подписаться
Abdurrahman Elbasir
Abdurrahman Elbasir
Postdoc Research Fellow at The Wistar Institute
Подтвержден адрес электронной почты в домене wistar.org
Название
Процитировано
Процитировано
Год
DeepCrystal: a deep learning framework for sequence-based protein crystallization prediction
A Elbasir, B Moovarkumudalvan, K Kunji, PR Kolatkar, H Bensmail, R Mall
Bioinformatics, 2018
522018
Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure
A Liu, M Walter, P Wright, A Bartosik, D Dolciami, A Elbasir, H Yang, ...
Biology direct 16, 1-15, 2021
452021
BCrystal: an interpretable sequence-based protein crystallization predictor
A Elbasir, R Mall, K Kunji, R Rawi, Z Islam, GY Chuang, PR Kolatkar, ...
Bioinformatics 36 (5), 1429-1438, 2020
352020
A modeling framework for embedding-based predictions for compound–viral protein activity
R Mall, A Elbasir, H Almeer, Z Islam, PR Kolatkar, S Chawla, E Ullah
Bioinformatics 37 (17), 2544-2555, 2021
20*2021
A deep learning approach reveals unexplored landscape of viral expression in cancer
A Elbasir, Y Ye, DE Schäffer, X Hao, J Wickramasinghe, K Tsingas, ...
Nature communications 14 (1), 785, 2023
162023
Multi-omics and machine learning reveal context-specific gene regulatory activities of PML:: RARA in acute promyelocytic leukemia
W Villiers, A Kelly, X He, J Kaufman-Cook, A Elbasir, H Bensmail, ...
Nature communications 14 (1), 724, 2023
122023
Computational methods summarizing mutational patterns in cancer: promise and limitations for clinical applications
A Patterson, A Elbasir, B Tian, N Auslander
Cancers 15 (7), 1958, 2023
22023
Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes
DE Schäffer, W Li, A Elbasir, DC Altieri, Q Long, N Auslander
ISME communications 3 (1), 128, 2023
12023
Systems and methods for identifying novel and divergent viruses in transcriptomes
N Auslander, A Elbasir
US Patent App. 18/392,646, 2024
2024
Modelling framework for embedding-based predictions for compound-viral protein activity
S Chawla, E Ullah, R Mall, H Almeer, A Elbasir
US Patent App. 17/804,408, 2022
2022
Machine Learning Approaches to Predict Protein Crystallization Propensities
A Elbasir
PQDT-Global, 2020
2020
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–11