Подписаться
David Alonso Barajas-Solano
David Alonso Barajas-Solano
Подтвержден адрес электронной почты в домене pnnl.gov - Главная страница
Название
Процитировано
Процитировано
Год
Physics‐informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems
AM Tartakovsky, CO Marrero, P Perdikaris, GD Tartakovsky, ...
Water Resources Research 56 (5), e2019WR026731, 2020
3752020
Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
QZ He, D Barajas-Solano, G Tartakovsky, AM Tartakovsky
Advances in Water Resources 141, 103610, 2020
3122020
Learning parameters and constitutive relationships with physics informed deep neural networks
AM Tartakovsky, CO Marrero, P Perdikaris, GD Tartakovsky, ...
arXiv preprint arXiv:1808.03398, 2018
1452018
Sparsifying priors for Bayesian uncertainty quantification in model discovery
SM Hirsh, DA Barajas-Solano, JN Kutz
Royal Society Open Science 9 (2), 211823, 2022
932022
Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence
X Yang, D Barajas-Solano, G Tartakovsky, AM Tartakovsky
Journal of Computational Physics 395, 410-431, 2019
852019
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs
L Yang, S Treichler, T Kurth, K Fischer, D Barajas-Solano, J Romero, ...
2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), 1-11, 2019
602019
Physics-informed machine learning with conditional Karhunen-Loève expansions
AM Tartakovsky, DA Barajas-Solano, Q He
Journal of Computational Physics 426, 109904, 2021
322021
Stochastic collocation methods for nonlinear parabolic equations with random coefficients
DA Barajas-Solano, DM Tartakovsky
SIAM/ASA Journal on Uncertainty Quantification 4 (1), 475-494, 2016
322016
Conditional Karhunen-Loève expansion for uncertainty quantification and active learning in partial differential equation models
R Tipireddy, DA Barajas-Solano, AM Tartakovsky
Journal of Computational Physics 418, 109604, 2020
242020
Physics‐informed machine learning method for large‐scale data assimilation problems
YH Yeung, DA Barajas‐Solano, AM Tartakovsky
Water Resources Research 58 (5), e2021WR031023, 2022
222022
Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients
DA Barajas-Solano, AM Tartakovsky
Journal of Computational Physics 395, 247-262, 2019
202019
Stochastically forced ensemble dynamic mode decomposition for forecasting and analysis of near-periodic systems
D Dylewsky, D Barajas-Solano, T Ma, AM Tartakovsky, JN Kutz
IEEE Access 10, 33440-33448, 2022
192022
Probabilistic density function method for stochastic ODEs of power systems with uncertain power input
P Wang, DA Barajas-Solano, E Constantinescu, S Abhyankar, D Ghosh, ...
SIAM/ASA Journal on Uncertainty Quantification 3 (1), 873-896, 2015
192015
Probabilistic density function method for nonlinear dynamical systems driven by colored noise
DA Barajas-Solano, AM Tartakovsky
Physical Review E 93 (5), 052121, 2016
182016
Physics-informed Gaussian process regression for states estimation and forecasting in power grids
AM Tartakovsky, T Ma, DA Barajas-Solano, R Tipireddy
International Journal of Forecasting 39 (2), 967-980, 2023
172023
Linear functional minimization for inverse modeling
DA Barajas‐Solano, BE Wohlberg, VV Vesselinov, DM Tartakovsky
Water Resources Research 51 (6), 4516-4531, 2015
152015
Efficient gHMC reconstruction of contaminant release history
DA Barajas-Solano, FJ Alexander, M Anghel, DM Tartakovsky
Frontiers in Environmental Science 7, 149, 2019
102019
Electric load and power forecasting using ensemble gaussian process regression
T Ma, DA Barajas-Solano, R Huang, AM Tartakovsky
Journal of Machine Learning for Modeling and Computing 3 (2), 2022
92022
Dynamic mode decomposition for forecasting and analysis of power grid load data
D Dylewsky, D Barajas-Solano, T Ma, AM Tartakovsky, JN Kutz
arXiv preprint arXiv:2010.04248, 2020
92020
A kinetic Monte Carlo approach for simulating cascading transmission line failure
J Roth, DA Barajas-Solano, P Stinis, J Weare, M Anitescu
arXiv preprint arXiv:1912.08081, 2019
92019
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20