Подписаться
Roberta Raileanu
Roberta Raileanu
Research Scientist at Meta, Honorary Lecturer at UCL
Нет подтвержденного адреса электронной почты - Главная страница
Название
Процитировано
Процитировано
Год
The llama 3 herd of models
A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ...
arXiv preprint arXiv:2407.21783, 2024
26912024
Toolformer: Language models can teach themselves to use tools
T Schick, J Dwivedi-Yu, R Dessì, R Raileanu, M Lomeli, E Hambro, ...
Advances in Neural Information Processing Systems 36, 68539-68551, 2023
14602023
Augmented language models: a survey
G Mialon, R Dessì, M Lomeli, C Nalmpantis, R Pasunuru, R Raileanu, ...
arXiv preprint arXiv:2302.07842, 2023
5122023
Challenges and applications of large language models
J Kaddour, J Harris, M Mozes, H Bradley, R Raileanu, R McHardy
arXiv preprint arXiv:2307.10169, 2023
4842023
Chain-of-verification reduces hallucination in large language models
S Dhuliawala, M Komeili, J Xu, R Raileanu, X Li, A Celikyilmaz, J Weston
arXiv preprint arXiv:2309.11495, 2023
3162023
Modeling others using oneself in multi-agent reinforcement learning
R Raileanu, E Denton, A Szlam, R Fergus
International conference on machine learning, 4257-4266, 2018
2522018
Ride: Rewarding impact-driven exploration for procedurally-generated environments
R Raileanu, T Rocktäschel
arXiv preprint arXiv:2002.12292, 2020
2212020
The nethack learning environment
H Küttler, N Nardelli, A Miller, R Raileanu, M Selvatici, E Grefenstette, ...
Advances in Neural Information Processing Systems 33, 7671-7684, 2020
1932020
Superbubbles in the Multiphase ISM and the Loading of Galactic Winds
CG Kim, EC Ostriker, R Raileanu
The Astrophysical Journal 834 (1), 25, 2016
1872016
Open-ended learning leads to generally capable agents
OEL Team, A Stooke, A Mahajan, C Barros, C Deck, J Bauer, J Sygnowski, ...
arXiv preprint arXiv:2107.12808, 2021
1792021
Learning with amigo: Adversarially motivated intrinsic goals
A Campero, R Raileanu, H Küttler, JB Tenenbaum, T Rocktäschel, ...
arXiv preprint arXiv:2006.12122, 2020
1582020
Automatic data augmentation for generalization in reinforcement learning
R Raileanu, M Goldstein, D Yarats, I Kostrikov, R Fergus
Advances in Neural Information Processing Systems 34, 5402-5415, 2021
1242021
Automatic data augmentation for generalization in deep reinforcement learning
R Raileanu, M Goldstein, D Yarats, I Kostrikov, R Fergus
arXiv preprint arXiv:2006.12862, 2020
1222020
Decoupling value and policy for generalization in reinforcement learning
R Raileanu, R Fergus
International Conference on Machine Learning, 8787-8798, 2021
1102021
Understanding the effects of rlhf on llm generalisation and diversity
R Kirk, I Mediratta, C Nalmpantis, J Luketina, E Hambro, E Grefenstette, ...
arXiv preprint arXiv:2310.06452, 2023
872023
The llama 3 herd of models
A Grattafiori, A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, ...
arXiv e-prints, arXiv: 2407.21783, 2024
852024
Improving intrinsic exploration with language abstractions
J Mu, V Zhong, R Raileanu, M Jiang, N Goodman, T Rocktäschel, ...
Advances in Neural Information Processing Systems 35, 33947-33960, 2022
672022
Motif: Intrinsic motivation from artificial intelligence feedback
M Klissarov, P D'Oro, S Sodhani, R Raileanu, PL Bacon, P Vincent, ...
arXiv preprint arXiv:2310.00166, 2023
552023
Hyperparameters in reinforcement learning and how to tune them
T Eimer, M Lindauer, R Raileanu
International conference on machine learning, 9104-9149, 2023
512023
Rainbow teaming: Open-ended generation of diverse adversarial prompts
M Samvelyan, SC Raparthy, A Lupu, E Hambro, A Markosyan, M Bhatt, ...
Advances in Neural Information Processing Systems 37, 69747-69786, 2025
492025
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20