Evolutionary relationships among diverse bacteriophages and prophages: all the world’sa phage RW Hendrix, MCM Smith, RN Burns, ME Ford, GF Hatfull Proceedings of the National Academy of Sciences 96 (5), 2192-2197, 1999 | 1303 | 1999 |
In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family HM Thorpe, MCM Smith Proceedings of the National Academy of Sciences 95 (10), 5505-5510, 1998 | 572 | 1998 |
Diversity in the serine recombinases M Smith, HM Thorpe Molecular microbiology 44 (2), 299-307, 2002 | 406 | 2002 |
Integration Site for Streptomyces Phage φBT1 and Development of Site-Specific Integrating Vectors MA Gregory, R Till, MCM Smith Journal of bacteriology 185 (17), 5320-5323, 2003 | 347 | 2003 |
Control of directionality in the site‐specific recombination system of the Streptomyces phage φC31 HM Thorpe, SE Wilson, M Smith Molecular microbiology 38 (2), 232-241, 2000 | 259 | 2000 |
New applications for phage integrases PCM Fogg, S Colloms, S Rosser, M Stark, MCM Smith Journal of molecular biology 426 (15), 2703-2716, 2014 | 218 | 2014 |
The dynamic architecture of the metabolic switch in Streptomyces coelicolor K Nieselt, F Battke, A Herbig, P Bruheim, A Wentzel, ØM Jakobsen, ... BMC genomics 11 (1), 10, 2010 | 212 | 2010 |
The Streptomyces Genome Contains Multiple Pseudo-attB Sites for the φC31-Encoded Site-Specific Recombination System P Combes, R Till, S Bee, MCM Smith Journal of bacteriology 184 (20), 5746-5752, 2002 | 211 | 2002 |
The arginine repressor is essential for plasmid‐stabilizing site‐specific recombination at the ColE1 cer locus. CJ Stirling, G Szatmari, G Stewart, MC Smith, DJ Sherratt The EMBO journal 7 (13), 4389-4395, 1988 | 201 | 1988 |
Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome Z Xu, L Thomas, B Davies, R Chalmers, M Smith, W Brown BMC biotechnology 13 (1), 87, 2013 | 193 | 2013 |
The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain J Koehnke, A Bent, WE Houssen, D Zollman, F Morawitz, S Shirran, ... Nature Structural and Molecular Biology 19 (8), 767, 2012 | 157 | 2012 |
Site-specific recombination by φC31 integrase and other large serine recombinases MCM Smith, WRA Brown, AR McEwan, PA Rowley Biochemical Society Transactions 38 (2), 388-394, 2010 | 149 | 2010 |
Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination SD Colloms, CA Merrick, FJ Olorunniji, WM Stark, MCM Smith, A Osbourn, ... Nucleic acids research 42 (4), e23-e23, 2013 | 145 | 2013 |
Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces A Rodríguez-García, P Combes, R Pérez-Redondo, MCA Smith, ... Nucleic acids research 33 (9), e87-e87, 2005 | 133 | 2005 |
Serine recombinases as tools for genome engineering WRA Brown, NCO Lee, Z Xu, MCM Smith Methods 53 (4), 372-379, 2011 | 126 | 2011 |
A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl‐accepting chemotaxis proteins in predation C Lambert, M Smith, RE Sockett Environmental microbiology 5 (2), 127-132, 2003 | 126 | 2003 |
The complete genome sequence of the Streptomyces temperate phage φC31: evolutionary relationships to other viruses MCM Smith, RN Burns, SE Wilson, MA Gregory Nucleic acids research 27 (10), 2145-2155, 1999 | 124 | 1999 |
A phage protein that binds φC31 integrase to switch its directionality T Khaleel, E Younger, AR McEwan, AS Varghese, M Smith Molecular microbiology 80 (6), 1450-1463, 2011 | 123 | 2011 |
Cross-resistance is modular in bacteria–phage interactions RCT Wright, VP Friman, MCM Smith, MA Brockhurst PLoS biology 16 (10), e2006057, 2018 | 122 | 2018 |
Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure RCT Wright, VP Friman, MCM Smith, MA Brockhurst MBio 10 (5), e01652-19, 2019 | 120 | 2019 |