Подписаться
Martin Ritzert
Martin Ritzert
Подтвержден адрес электронной почты в домене informatik.uni-goettingen.de
Название
Процитировано
Процитировано
Год
Weisfeiler and leman go neural: Higher-order graph neural networks
C Morris, M Ritzert, M Fey, WL Hamilton, JE Lenssen, G Rattan, M Grohe
Proceedings of the AAAI Conference on Artificial Intelligence 33, 4602-4609, 2019
19772019
Graph neural networks for maximum constraint satisfaction
J Toenshoff, M Ritzert, H Wolf, M Grohe
Frontiers in artificial intelligence 3, 98, 2021
83*2021
Walking out of the weisfeiler leman hierarchy: Graph learning beyond message passing
J Tönshoff, M Ritzert, H Wolf, M Grohe
Transactions on Machine Learning Research, 2023
58*2023
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
J Tönshoff, M Ritzert, E Rosenbluth, M Grohe
arXiv preprint arXiv:2309.00367, 2023
432023
Learning first-order definable concepts over structures of small degree
M Grohe, M Ritzert
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1-12, 2017
352017
The effects of randomness on the stability of node embeddings
T Schumacher, H Wolf, M Ritzert, F Lemmerich, M Grohe, M Strohmaier
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2021
262021
Graph machine learning for design of high‐octane fuels
JG Rittig, M Ritzert, AM Schweidtmann, S Winkler, JM Weber, P Morsch, ...
AIChE Journal 69 (4), e17971, 2023
232023
Learning MSO-definable hypotheses on strings
M Grohe, C Löding, M Ritzert
International Conference on Algorithmic Learning Theory, 434-451, 2017
192017
Transformers vs. Message Passing GNNs: Distinguished in Uniform
J Tönshoff, E Rosenbluth, M Ritzert, B Kisin, M Grohe
The Twelfth International Conference on Learning Representations, 2023
13*2023
Optimal weak to strong learning
K Green Larsen, M Ritzert
Advances in Neural Information Processing Systems 35, 32830-32841, 2022
122022
On the Parameterized Complexity of Learning First-Order Logic
S van Bergerem, M Grohe, M Ritzert
Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of …, 2022
92022
Learning Definable Hypotheses on Trees
E Grienenberger, M Ritzert
22nd International Conference on Database Theory (ICDT 2019), 2019
72019
Adaboost is not an optimal weak to strong learner
MM Høgsgaard, KG Larsen, M Ritzert
International Conference on Machine Learning, 13118-13140, 2023
52023
On the Parameterized Complexity of Learning Logic
S van Bergerem, M Grohe, M Ritzert
CoRR, 2021
22021
Boosting, Voting Classifiers and Randomized Sample Compression Schemes
A da Cunha, KG Larsen, M Ritzert
arXiv preprint arXiv:2402.02976, 2024
12024
MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions
P Turishcheva, L Hansel, M Ritzert, MA Weis, AS Ecker
arXiv preprint arXiv:2410.16124, 2024
2024
Learning on graphs with logic and neural networks
M Ritzert
Dissertation, RWTH Aachen University, 2021, 2021
2021
How can we use random walks in deep learning on graphs?
M Ritzert
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–18