Sledovať
Ryan Cohn
Názov
Citované v
Citované v
Rok
Recent advances and applications of deep learning methods in materials science
K Choudhary, B DeCost, C Chen, A Jain, F Tavazza, R Cohn, CW Park, ...
npj Computational Materials 8 (1), 59, 2022
5852022
Overview: Computer vision and machine learning for microstructural characterization and analysis
EA Holm, R Cohn, N Gao, AR Kitahara, TP Matson, B Lei, SR Yarasi
Metallurgical and Materials Transactions A 51, 5985-5999, 2020
2142020
Unsupervised machine learning via transfer learning and k-means clustering to classify materials image data
R Cohn, E Holm
Integrating Materials and Manufacturing Innovation 10 (2), 231-244, 2021
962021
Recent advances and applications of deep learning methods in materials science. npj Computational Materials, 8 (1): 59
K Choudhary, B DeCost, C Chen, A Jain, F Tavazza, R Cohn, CW Park, ...
URL: https://doi. org/10.1038/s41524-022-00734-6, doi 10, 2022
532022
Instance segmentation for direct measurements of satellites in metal powders and automated microstructural characterization from image data
R Cohn, I Anderson, T Prost, J Tiarks, E White, E Holm
Jom 73 (7), 2159-2172, 2021
372021
Recent advances and applications of deep learning methods in materials science. npj Comput Mater 8
K Choudhary, B DeCost, C Chen, A Jain, F Tavazza, R Cohn, CW Park, ...
Doi, 2022
312022
Extreme abnormal grain growth: connecting mechanisms to microstructural outcomes
CE Krill III, EA Holm, JM Dake, R Cohn, K Holíková, F Andorfer
Annual Review of Materials Research 53 (1), 319-345, 2023
142023
Recent advances and applications of deep learning methods in materials science. npj Comput Mater 2022; 8: 59
K Choudhary, B DeCost, C Chen, A Jain, F Tavazza, R Cohn, CW Park, ...
DOI, 0
7
Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data. Integrating Materials and Manufacturing Innovation, 10 (2), 231–244
R Cohn, E Holm
62021
Neural message passing for predicting abnormal grain growth in Monte Carlo simulations of microstructural evolution
R Cohn, E Holm
arXiv preprint arXiv:2110.09326, 2021
32021
Computer vision and machine learning to quantify microstructure
EA Holm, R Cohn, N Gao, AR Kitahara, B Lei, SR Yarasi, TP Matson
AM&P Technical Articles 179 (2), 13-18, 2021
22021
Calorimetric study with uncertainty analysis to investigate the precipitation kinetics in a nanostructured Al composite
R Cohn, B Fullenwider, K Ma, JM Schoenung
Advanced Engineering Materials 20 (4), 1700728, 2018
22018
Computer vision and deep learning for microstructural modeling and automated characterization of materials
RC Cohn
Carnegie Mellon University, 2022
12022
Graph convolutional network for predicting abnormal grain growth in Monte Carlo simulations of microstructural evolution
R Cohn, EA Holm
Scientific Reports 14 (1), 1-11, 2024
2024
Instance Segmentation for Occluded Particles
K Farmer, R Cohn, E Holm
Kansas City Nuclear Security Campus (KCNSC), Kansas City, MO (United States), 2023
2023
Systém momentálne nemôže vykonať operáciu. Skúste to neskôr.
Články 1–15