Sledovať
Michael Coughlan
Michael Coughlan
Graduate Student, University of New Hampshire
Overená e-mailová adresa na: wildcats.unh.edu
Názov
Citované v
Citované v
Rok
Comparison of deep learning techniques to model connections between solar wind and ground magnetic perturbations
AM Keesee, V Pinto, M Coughlan, C Lennox, MS Mahmud, HK Connor
Frontiers in Astronomy and Space Sciences 7, 550874, 2020
342020
Revisiting the ground magnetic field perturbations challenge: A machine learning perspective
VA Pinto, AM Keesee, M Coughlan, R Mukundan, JW Johnson, ...
Frontiers in Astronomy and Space Sciences 9, 869740, 2022
192022
Probabilistic forecasting of ground magnetic perturbation spikes at mid‐latitude stations
M Coughlan, A Keesee, V Pinto, R Mukundan, JP Marchezi, J Johnson, ...
Space Weather 21 (6), e2023SW003446, 2023
42023
Using Machine Learning Explainability Techniques to Examine Drivers of Ground Magnetic Field Localization
MK Coughlan, AM Keesee, VA Pinto, R Mukundan, JP Marchezi, ...
2025
Latitudinal and MLT distribution of dB/dt spikes during geomagnetic storms from 1995 to 2021 during Coronal Mass Ejection and High-Speed Stream events.
JP Marchezi, AM Keesee, M Coughlan, R Mukundan, VA Pinto, ...
AGU24, 2024
2024
Sytematic Discovery of the Relationships between Localized Geomagnetic Disturbances and the Solar Wind
R Mukundan, AM Keesee, JP Marchezi, VA Pinto, M Coughlan, ...
AGU24, 2024
2024
Evaluation of gap-filling for OMNI data. How much data is it safe to interpolate?
VA Pinto, M Coughlan, R Mukundan, JP Marchezi, AM Keesee
AGU24, 2024
2024
Using Superposed Epoch Analysis and Shapley Values to Examine Drivers of Localized dB/dt
M Coughlan, AM Keesee, VA Pinto, R Mukundan, JP Marchezi, ...
AGU24, 2024
2024
Space weather forecasts of ground level space weather in the UK: Evaluating performance and limitations
AW Smith, IJ Rae, C Forsyth, JC Coxon, MT Walach, CJ Lao, ...
Space Weather 22 (11), e2024SW003973, 2024
2024
Forecasting 1-hour Ahead Ground Magnetic Field Maximum Perturbations With Deep Learning Models
VA Pinto, AM Keesee, M Coughlan, R Mukundan, JP Marchezi, ...
AGU Fall Meeting Abstracts 2023 (621), NG13B-0621, 2023
2023
Analyzing the Influence of Magnetotail Phenomena on the Localization of Ground Magnetic Field Perturbations Using Machine Learning Interpretability Techniques
M Coughlan, AM Keesee, VA Pinto, JP Marchezi, R Mukundan, ...
AGU Fall Meeting Abstracts 2023, NG11A-07, 2023
2023
Adapting the Crossformer to Forecast Geomagnetically Induced Currents
JW Johnson, F Siddiqui, M Coughlan, AM Keesee, HKIM Connor
AGU Fall Meeting Abstracts 2023, NG12A-08, 2023
2023
On the effects of the solar wind structures in the global distribution of ground-based geomagnetic perturbations during geomagnetic storms
JP Marchezi, AM Keesee, M Coughlan, R Mukundan, VA Pinto, ...
AGU Fall Meeting Abstracts 2023 (2972), SM33D-2972, 2023
2023
Characterizing the Spatial Scales of Localized Ground-Level Magnetic Perturbations
R Mukundan, AM Keesee, JP Marchezi, M Coughlan, DL Hampton, ...
AGU Fall Meeting Abstracts 2023 (2967), SM33D-2967, 2023
2023
Investigating the Influence of Inner Magnetosphere Data on a Regional Geomagnetically Induced Current Forecasting Model
R Mukundan, AM Keesee, VA Pinto, M Coughlan, H Connor
AGU Fall Meeting Abstracts 2022, SM32C-1738, 2022
2022
Forecasting Ground Magnetic Perturbations at High and Mid-Latitudes Using Deep Learning and Near Real-Time Solar Wind Data
VA Pinto, AM Keesee, M Coughlan, R Mukundan, JW Johnson, ...
AGU Fall Meeting Abstracts 2022, NG52A-0153, 2022
2022
Forecasting of Extreme Ground Magnetic Field Fluctuations at Mid-Latitudes using Machine Learning
M Coughlan, AM Keesee, VA Pinto, R Mukundan, JW Johnson, H Connor
AGU Fall Meeting Abstracts 2022, SM32C-1736, 2022
2022
Using a Convolutional Neural Network with Uncertainty to Forecast GIC Risk of Occurrence at Mid-Latitudes
MK Coughlan
Proceedings of the 2nd Machine Learning in Heliophysics, 25, 2022
2022
Developing near real-time ground magnetic field perturbations predictions with machine learning models
VA Pinto, AM Keesee, M Coughlan, R Mukundan, J Johnson, HK Connor
Proceedings of the 2nd Machine Learning in Heliophysics, 26, 2022
2022
Evaluating Near-Real-Time Ground Magnetic Field Perturbations Predictions Using Machine Learning Models
V Pinto, A Keesee, M Coughlan, R Mukundan, J Johnson, HK Connor
102nd American Meteorological Society Annual Meeting, 2022
2022
Systém momentálne nemôže vykonať operáciu. Skúste to neskôr.
Články 1–20