Sledovať
Valerie Vaquet
Valerie Vaquet
Overená e-mailová adresa na: techfak.uni-bielefeld.de
Názov
Citované v
Citované v
Rok
Evaluating robustness of counterfactual explanations
A Artelt, V Vaquet, R Velioglu, F Hinder, J Brinkrolf, M Schilling, ...
2021 IEEE symposium series on computational intelligence (SSCI), 01-09, 2021
652021
Model-based explanations of concept drift
F Hinder, V Vaquet, J Brinkrolf, B Hammer
Neurocomputing 555, 126640, 2023
262023
Suitability of different metric choices for concept drift detection
F Hinder, V Vaquet, B Hammer
International Symposium on Intelligent Data Analysis, 157-170, 2022
232022
Contrasting Explanation of Concept Drift.
F Hinder, A Artelt, V Vaquet, B Hammer
ESANN, 2022
142022
One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift
F Hinder, V Vaquet, B Hammer
Frontiers in Artificial Intelligence 7, 1330257, 2024
122024
One or Two Things We know about Concept Drift--A Survey on Monitoring Evolving Environments
F Hinder, V Vaquet, B Hammer
arXiv preprint arXiv:2310.15826, 2023
12*2023
On the Hardness and Necessity of Supervised Concept Drift Detection.
F Hinder, V Vaquet, J Brinkrolf, B Hammer
ICPRAM, 164-175, 2023
102023
Taking care of our drinking water: Dealing with sensor faults in water distribution networks
V Vaquet, A Artelt, J Brinkrolf, B Hammer
International Conference on Artificial Neural Networks, 682-693, 2022
102022
Fast non-parametric conditional density estimation using moment trees
F Hinder, V Vaquet, J Brinkrolf, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021
102021
On the change of decision boundary and loss in learning with concept drift
F Hinder, V Vaquet, J Brinkrolf, B Hammer
International Symposium on Intelligent Data Analysis, 182-194, 2023
92023
Investigating intensity and transversal drift in hyperspectral imaging data
V Vaquet, P Menz, U Seiffert, B Hammer
Neurocomputing 505, 68-79, 2022
92022
Localization of concept drift: Identifying the drifting datapoints
F Hinder, V Vaquet, J Brinkrolf, A Artelt, B Hammer
2022 International Joint Conference on Neural Networks (IJCNN), 1-9, 2022
92022
A shape-based method for concept drift detection and signal denoising
F Hinder, J Brinkrolf, V Vaquet, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-08, 2021
92021
Balanced sam-knn: Online learning with heterogeneous drift and imbalanced data
V Vaquet, B Hammer
Artificial Neural Networks and Machine Learning–ICANN 2020: 29th …, 2020
92020
Contrastive explanations for explaining model adaptations
A Artelt, F Hinder, V Vaquet, R Feldhans, B Hammer
International Work-Conference on Artificial Neural Networks, 101-112, 2021
82021
Investigating the suitability of concept drift detection for detecting leakages in water distribution networks
V Vaquet, F Hinder, B Hammer
arXiv preprint arXiv:2401.01733, 2024
62024
Contrasting explanations for understanding and regularizing model adaptations
A Artelt, F Hinder, V Vaquet, R Feldhans, B Hammer
Neural Processing Letters 55 (5), 5273-5297, 2023
62023
2021 IEEE Symposium Series on Computational Intelligence (SSCI)
A Artelt, V Vaquet, R Velioglu, F Hinder, J Brinkrolf, M Schilling
IEEE, 2021
62021
Online learning on non-stationary data streams for image recognition using deep embeddings
V Vaquet, F Hinder, J Vaquet, J Brinkrolf, B Hammer
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021
42021
Localizing of Anomalies in Critical Infrastructure using Model-Based Drift Explanations
V Vaquet, F Hinder, J Vaquet, K Lammers, L Quakernack, B Hammer
2024 International Joint Conference on Neural Networks (IJCNN), 1-8, 2024
32024
Systém momentálne nemôže vykonať operáciu. Skúste to neskôr.
Články 1–20