Fractional powers of operators corresponding to coercive problems in Lipschitz domains MS Agranovich, AM Selitskii Functional Analysis and Its Applications 47 (2), 83-95, 2013 | 27 | 2013 |
The second boundary-value problem for parabolic differential-difference equations AM Selitskii, AL Skubachevskii Journal of Mathematical Sciences 143, 3386-3400, 2007 | 15 | 2007 |
The space of initial data for the second boundary-value problem for parabolic differential-difference equation AM Selitskii Contemp. Anal. Appl. Math 1 (1), 34-41, 2013 | 14 | 2013 |
Music source separation with generative flow G Zhu, J Darefsky, F Jiang, A Selitskiy, Z Duan IEEE Signal Processing Letters 29, 2288-2292, 2022 | 12 | 2022 |
Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains AM Selitskii Mathematical Notes 94 (3), 444-447, 2013 | 9 | 2013 |
The space of initial data for the Robin boundary-value problem for parabolic differential-difference equation AM Selitskii Contemporary Analysis and Applied Mathematics 1 (2), 91-97, 2013 | 9 | 2013 |
The space of initial data of the 3d boundary-value problem for a parabolic differential-difference equation in the one-dimensional case. A Selitskii Mathematical Notes 92, 2012 | 7 | 2012 |
The third boundary value problem for parabolic differential-difference equation in one-dimensional case AM Selitskii, H Min Functional Differential Equations, 2007 | 7 | 2007 |
The third boundary-value problem for parabolic differential-difference equations. A Selitskii Journal of Mathematical Sciences 153 (5), 2008 | 5 | 2008 |
Vtoraya kraevaya zadacha dlya parabolicheskogo differentsial’noraznostnogo uravneniya AL Skubachevskii, AM Selitskii The second boundary-value problem for a parabolic differential-difference …, 0 | 5 | |
On the solvability of parabolic functional differential equations in Banach spaces AM Selitskii Eurasian Mathematical Journal 7 (4), 85-91, 2016 | 4 | 2016 |
L p -solvability of parabolic problems with an operator satisfying the Kato conjecture AM Selitskii Differential Equations 51, 776-782, 2015 | 4 | 2015 |
The modeling of some optical systems on the base of parabolic differential-difference equation AM Selitskii Matematicheskoe modelirovanie 24 (12), 38-42, 2012 | 1 | 2012 |
On solvability of parabolic functional differential equations in Banach spaces (II) AM Selitskii Eurasian Mathematical Journal 11 (2), 86-92, 2020 | | 2020 |
Study of mathematical model of nonlinear optical system with two dimensional feedback AM Selitskii Matematicheskoe modelirovanie 27 (7), 117-121, 2015 | | 2015 |
Maximal regularity of parabolic problems with operator satisfying the Kato conjecture AM Selitskii Седьмая международная конференция по дифференциальным и функционально …, 2014 | | 2014 |
Weak and strong solvability in Lp spaces of the second boundary-value problem for a parabolic differential-difference equation AM Selitskii | | |