Spremljaj
Farah Alsafadi
Naslov
Navedeno
Navedeno
Leto
A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal–hydraulics codes
X Wu, Z Xie, F Alsafadi, T Kozlowski
Nuclear Engineering and Design 384, 111460, 2021
482021
Towards improving the predictive capability of computer simulations by integrating inverse Uncertainty Quantification and quantitative validation with Bayesian hypothesis testing
Z Xie, F Alsafadi, X Wu
Nuclear Engineering and Design 383, 111423, 2021
142021
Deep generative modeling-based data augmentation with demonstration using the BFBT benchmark void fraction datasets
F Alsafadi, X Wu
Nuclear Engineering and Design 415, 112712, 2023
72023
Development of Whole System Digital Twins for Advanced Reactors: Leveraging Graph Neural Networks and SAM Simulations
Y Liu, F Alsafadi, T Mui, D O’Grady, R Hu
Nuclear Technology, 1-18, 2024
32024
Predicting Critical Heat Flux with Uncertainty Quantification and Domain Generalization Using Conditional Variational Autoencoders and Deep Neural Networks
F Alsafadi, A Furlong, X Wu
arXiv preprint arXiv:2409.05790, 2024
32024
ARTISANS—Artificial Intelligence for Simulation of Advanced Nuclear Systems for Nuclear Fission Technology
A Akins, A Furlong, L Kohler, J Clifford, C Brady, F Alsafadi, X Wu
Nuclear Engineering and Design 423, 113170, 2024
12024
Predicting pwr fuel assembly cips susceptibility with convolutional neural networks: Performance and uncertainty quantification
A Furlong, F Alsafadi, S Palmtag, A Godfrey, S Hayes, X Wu
2024 International Conference on Physics of Reactors, PHYSOR 2024, 1684-1693, 2024
12024
Machine learning-based prediction of crud buildup locations in pressurized water reactors
A Furlong, F Alsafadi, L Kohler, X Wu, S Palmtag, A Godfrey, S Hayes
Transactions of the American Nuclear Society 129, 456-459, 2023
12023
Effect of mesh refinement on the solution of the inverse uncertainty quantification problem for transient physics
RAA Saleem, FR Alsafadi, N Al-Abidah
Progress in Nuclear Energy 152, 104360, 2022
12022
Data-driven prediction and uncertainty quantification of PWR Crud-Induced Power Shift using convolutional neural networks
A Furlong, F Alsafadi, S Palmtag, A Godfrey, X Wu
Energy, 134447, 2025
2025
An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation
F Alsafadi, M Yaseen, X Wu
arXiv preprint arXiv:2410.19063, 2024
2024
EFFECT OF PARAMETRIC TUNING ON THE SOLUTION OF THE INVERSE UNCERTAINTY QUANTIFICATION PROBLEM
FR AL-SAFADI
Jordan University of Science and Technology, 2020
2020
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–12