A machine learning framework for the analysis and prediction of catalytic activity from experimental data A Smith, A Keane, JA Dumesic, GW Huber, VM Zavala Applied Catalysis B: Environmental 263, 118257, 2020 | 106 | 2020 |
Topological data analysis: concepts, computation, and applications in chemical engineering AD Smith, P Dłotko, VM Zavala Computers & Chemical Engineering 146, 107202, 2021 | 56 | 2021 |
Convolutional network analysis of optical micrographs for liquid crystal sensors AD Smith, N Abbott, VM Zavala The Journal of Physical Chemistry C 124 (28), 15152-15161, 2020 | 52 | 2020 |
The Euler characteristic: A general topological descriptor for complex data A Smith, VM Zavala Computers & Chemical Engineering 154, 107463, 2021 | 46 | 2021 |
Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species S Jiang, JH Noh, C Park, AD Smith, NL Abbott, VM Zavala Analyst 146 (4), 1224-1233, 2021 | 40 | 2021 |
Sensing gas mixtures by analyzing the spatiotemporal optical responses of liquid crystals using 3D convolutional neural networks N Bao, S Jiang, A Smith, JJ Schauer, M Mavrikakis, RC Van Lehn, ... ACS sensors 7 (9), 2545-2555, 2022 | 20 | 2022 |
Topological analysis of molecular dynamics simulations using the euler characteristic A Smith, S Runde, AK Chew, AS Kelkar, U Maheshwari, RC Van Lehn, ... Journal of Chemical Theory and Computation 19 (5), 1553-1567, 2023 | 16 | 2023 |
Data analysis using Riemannian geometry and applications to chemical engineering A Smith, B Laubach, I Castillo, VM Zavala Computers & Chemical Engineering 168, 108023, 2022 | 15 | 2022 |
Topological data analysis for particulate gels AD Smith, GJ Donley, E Del Gado, VM Zavala ACS nano 18 (42), 28622-28635, 2024 | 8 | 2024 |
Scalable extraction of information from spatiotemporal patterns of chemoresponsive liquid crystals using topological descriptors S Jiang, N Bao, AD Smith, S Byndoor, RC Van Lehn, M Mavrikakis, ... The Journal of Physical Chemistry C 127 (32), 16081-16098, 2023 | 5 | 2023 |
Reviews: Topological distances and losses for brain networks MK Chung, A Smith, G Shiu arXiv preprint arXiv:2102.08623, 2021 | 4 | 2021 |
Multi-site, multi-pollutant atmospheric data analysis using Riemannian geometry A Smith, J Hua, B de Foy, JJ Schauer, VM Zavala Science of The Total Environment 892, 164064, 2023 | 3 | 2023 |
Automated characterization and monitoring of material shape using Riemannian geometry A Smith, S Schilling, P Daoutidis Computers & Chemical Engineering 181, 108525, 2024 | 1 | 2024 |
Topological descriptors for the electron density of inorganic solids NJ Szymanski, A Smith, P Daoutidis, CJ Bartel arXiv preprint arXiv:2502.16379, 2025 | | 2025 |
Multi-scale causality in active matter A Smith, D Ghosh, A Tan, X Cheng, P Daoutidis Computers & Chemical Engineering, 109052, 2025 | | 2025 |
Causal Discovery in Chemical Processes: Dealing with Cycles and Latent Confounders H Dewantoro, A Smith, P Daoutidis 2024 AIChE Annual Meeting, 2024 | | 2024 |
Deriving Line Tension and Dipole Density Values for Solid-Liquid Phase Monolayers Z McAllister, C Valtierrez-Gaytan, A Smith, J Zasadzinski, J Barakat, ... 2024 AIChE Annual Meeting, 2024 | | 2024 |
A Computational Topology Framework for Molecular Dynamics Data: A Case Study in Soft Gels A Smith, G Donley, E Del Gado, VM Zavala 2024 AIChE Annual Meeting, 2024 | | 2024 |
Quantifying Hierarchical Causality in Active Matter Systems A Smith, D Ghosh, X Cheng, P Daoutidis 2024 AIChE Annual Meeting, 2024 | | 2024 |
The shape of complex systems VM Zavala, AD Smith Nature Chemical Engineering 1 (7), 494-494, 2024 | | 2024 |