Прати
Mizuho Nishio
Mizuho Nishio
Верификована је имејл адреса на kuhp.kyoto-u.ac.jp
Наслов
Навело
Навело
Година
Convolutional neural networks: an overview and application in radiology
R Yamashita, M Nishio, RKG Do, K Togashi
Insights into imaging 9, 611-629, 2018
52352018
Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods
M Nishio, S Noguchi, H Matsuo, T Murakami
Scientific reports 10 (1), 17532, 2020
1822020
Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional …
M Nishio, O Sugiyama, M Yakami, S Ueno, T Kubo, T Kuroda, K Togashi
PloS one 13 (7), e0200721, 2018
1732018
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
M Nishio, M Nishizawa, O Sugiyama, R Kojima, M Yakami, T Kuroda, ...
PloS one 13 (4), e0195875, 2018
1232018
Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques
S Noguchi, M Nishio, M Yakami, K Nakagomi, K Togashi
Computers in biology and medicine 121, 103767, 2020
1212020
N stage disease in patients with non–small cell lung cancer: efficacy of quantitative and qualitative assessment with STIR turbo spin-echo imaging, diffusion-weighted MR …
Y Ohno, H Koyama, T Yoshikawa, M Nishio, N Aoyama, Y Onishi, ...
Radiology 261 (2), 605-615, 2011
1202011
Convolutional auto-encoder for image denoising of ultra-low-dose CT
M Nishio, C Nagashima, S Hirabayashi, A Ohnishi, K Sasaki, T Sagawa, ...
Heliyon 3 (8), 2017
1102017
Magnetic resonance imaging for lung cancer
H Koyama, Y Ohno, S Seki, M Nishio, T Yoshikawa, S Matsumoto, ...
Journal of thoracic imaging 28 (3), 138-150, 2013
1022013
Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018)
R Yamashita, M Nishio, RKG Do, K Togashi
962018
Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT
S Koyasu, M Nishio, H Isoda, Y Nakamoto, K Togashi
Annals of Nuclear Medicine 34, 49-57, 2020
902020
Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT
Y Ohno, M Nishio, H Koyama, S Seki, M Tsubakimoto, Y Fujisawa, ...
Radiology 274 (2), 563-575, 2015
892015
Dynamic contrast-enhanced CT and MRI for pulmonary nodule assessment
Y Ohno, M Nishio, H Koyama, S Miura, T Yoshikawa, S Matsumoto, ...
American Journal of Roentgenology 202 (3), 515-529, 2014
822014
Homology-based image processing for automatic classification of histopathological images of lung tissue
M Nishio, M Nishio, N Jimbo, K Nakane
Cancers 13 (6), 1192, 2021
802021
Value of diffusion-weighted MR imaging using various parameters for assessment and characterization of solitary pulmonary nodules
H Koyama, Y Ohno, S Seki, M Nishio, T Yoshikawa, S Matsumoto, ...
European journal of radiology 84 (3), 509-515, 2015
772015
Automatic segmentation of the uterus on MRI using a convolutional neural network
Y Kurata, M Nishio, A Kido, K Fujimoto, M Yakami, H Isoda, K Togashi
Computers in biology and medicine 114, 103438, 2019
722019
Improving breast mass classification by shared data with domain transformation using a generative adversarial network
C Muramatsu, M Nishio, T Goto, M Oiwa, T Morita, M Yakami, T Kubo, ...
Computers in biology and medicine 119, 103698, 2020
692020
Diffusion-weighted MR imaging vs. multi-detector row CT: Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors
S Seki, H Koyama, Y Ohno, M Nishio, D Takenaka, Y Maniwa, T Itoh, ...
European journal of radiology 83 (5), 835-842, 2014
642014
Emphysema quantification by low-dose CT: potential impact of adaptive iterative dose reduction using 3D processing
M Nishio, S Matsumoto, Y Ohno, N Sugihara, H Inokawa, T Yoshikawa, ...
American Journal of Roentgenology 199 (3), 595-601, 2012
552012
Diagnostic accuracy of deep-learning with anomaly detection for a small amount of imbalanced data: discriminating malignant parotid tumors in MRI
H Matsuo, M Nishio, T Kanda, Y Kojita, AK Kono, M Hori, M Teshima, ...
Scientific Reports 10 (1), 19388, 2020
502020
Computer-aided diagnosis for lung cancer: usefulness of nodule heterogeneity
M Nishio, C Nagashima
Academic radiology 24 (3), 328-336, 2017
492017
Систем тренутно не може да изврши ову радњу. Пробајте поново касније.
Чланци 1–20